q-hypergeometric functions and applications : H. Exton: Wiley, New York. 1983, 347 pages, US$22.50. ISBN 0-853124914doi:10.1016/0378-4754(84)90050-8Mathematics & Computers in Simulation
(x) of the given equationeqexists too and the certificaterx=hqxhxcomputes asrx=zxaxcxbxcqx,wherec(x)is the polynomial solution of the q-difference equationeq1,a(x)andb(x)are the couple of the factors, andz(x)is the solution ...
Certain integral representations satisfied by these matrix functions have also been established.doi:10.1080/10236198.2019.1668930Ravi DwivediVivek SahaiJournal of Difference Equations and Applications
M.G. de Bruin, Some convergence results in simultaneous rational approximation to the set of hypergeometric functions {1 F 1(1;c i;z)} n i=1 , in:Padé Approximation and its Applications, Bad Honnef, Lecture Notes in Mathematics no. 1071 (Springer, Berlin, 1984) pp. 12–33. Google ...
Fields Proceedings of the Workshop on ‘Special Functions, q -Series and Related Topics’, Toronto, Ontario, Fields Institute for Research in Mathematical Sciences at University College (1997) Google Scholar 15 M. Petkovšek, H. S. Wilf, D. Zeilberger, A, B Google Scholar 16 A. Riese,...
previous paper [1] the authors consider arithmetical properties of the values of functions satisfying the functional equation of Poincaré type zsf(z) = P(z)f(qz) + Q(z), (1.1) where s is a positive integer, q is a nonzero element of an algebraic number field Κ, and P, Q e K[...
Ernst, T. On Eulerian q-integrals for single and multiple q-hypergeometric series. Commun. Korean Math. Soc. 2018, 33, 179–196. [Google Scholar] Ernst, T. On various formulas with q-integrals and their applications to q-hypergeometric functions. Eur. J. Pure Appl. Math. 2020. [Google...
References [1] Andrews, G.E.: Problems and prospects for basic hypergeometric functions, In: Askey, R.A. (ed.) Theory and Application for Basic Hypergeometric Functions, Mathematics Research Center, University of Wisconsin, Publ. No. 35, pp. 191– 224. Academic Press, New York (1975) [2...
Abel-typeordinarydi,erentialequations(ODE),ineithertheirsecondkindform[1],y′=f3y3+f2y2+f1y+f01y+g0,(1)wherethe{fi,gi}arearbitraryfunctionsofx,ortheir,rstkindformobtainedtaking{g1=0,g0=1},appearfrequentlyinphysicalapplications[1(2)3].Thishasforalongtimemotivatedtheirstudy. ...
Ernst T. Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn Functions. Mathematics. 2023; 11(10):2370. https://doi.org/10.3390/math11102370 Chicago/Turabian Style Ernst, Thomas. 2023. "Applications of q-Real Numbers to Triple q-Hypergeometric Functions and q-Horn...