使用FDR校正得到的p-adjust即为q-value。 clusterProfiler包中的enrichKEGG函数和enrichGO函数用的什么方法? p-adjust clusterProfiler包中的enrichKEGG函数和enrichGO函数的默认p值校正方法为BH法 qvalue enrichKEGG函数和enrichGO函数都包含一个用于富集的函数enricher_internal(这个函数属于R包DOSE),而在enricher_interna...
在统计分析中,p-value、p-adjust和q-value是三个关键概念,它们在检验假设和控制错误率中扮演重要角色。p-value是一个在假设检验中使用的统计量,它衡量在原假设(H0)成立的前提下,观察到特定结果的概率。当p值小于预先设定的阈值(如0.05),这暗示观察结果可能不支持H0,倾向于接受备选假设(H1...
这样我们就可以知道,在同时有p-value和p-adjust时,我们应该选择p-adjust用来作为显著性的阈值。 q-value q-value另有一些区别,它也来自于p-value。 q-value可以简单理解为表示p-value产生假阳性的概率,当q-value < 0.05时,p-value显著的假阳性小于0.05。 q值(q-value)是p值校正后的结果。 可定义为:多重假...
这种时候我们就需要对p-value进行校正,校正的流程这里不细说了,我们可以简单理解为,p-adjust是用来判断p-value是否可信的一个参数,它来自于p-value,但是相对于p-value可信度更高。这样我们就可以知道,在 同时有p-value和p-adjust时,我们应该选择p-adjust 用来作为显著性的阈值。 q-value另有一些区别,它也来自于...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
每组我们有 12 个重复。我们通常做的是取每组 12 个重复的平均值,并进行 t 检验以比较差异是否显着(假设正态分布)。然后我们得到一个 p 值,比如 p = 0.035。如果它小于 0.05(所设置的阈值),我们得出结论,在处理后基因 A 的表达发生了显着变化。好,问题来了,p value为0.035告诉了我们怎样的信息?
P-value 的计算方式 1) P-value 是 (在H0 = true的情况下)得到和试验数据一样极端(或更极端)的统计量的概率. 它不是H1发生的概率. 假定吃苹果的...