Q学习(Q-Learning)是一种强化学习算法,它属于无模型预测算法,用于解决马尔可夫决策过程(MDP)问题。Q学习算法的核心思想是通过学习一个动作价值函数(Q函数),来评估在给定状态下采取某个动作的期望效用。一、基本概念 1. 状态(State):环境的某个特定情况或配置。2. 动作(Action):在给定状态下可以采取的...
Q-Learning是一种基于值函数的强化学习算法,这里用该算法解决走迷宫问题。 算法步骤如下: 1. 初始化 Q 表:每个表格对应状态动作的 Q 值。这里就是一个H*W*4的表,4代表上下左右四个动作。 2. 选择动作: 根据 Q 表格选择最优动作或者以一定概率随机选择动作。 3. 执行动作,得到返回奖励(这里需要自定义,比...
重复执行步 2 和步 3 直到ss成为目标状态. 通过不断迭代更新Q(s,a)Q(s,a)的值,Q-Learning算法可以学习到最优策略π∗π∗下的状态-动作对的价值函数Q∗(s,a)Q∗(s,a)。这个过程不需要环境的动态模型,因此Q-Learning是一种无模型的强化学习算法。 1.2 Q-Learning解的推导 贝尔曼方程是动态规划中...
Q-Learning 算法的过程详解 第1步:初始化Q表 步骤2和3:选择并执行操作 步骤4和5:评估 Q-Learning(Q学习)是强化学习的一种算法,在没有先验环境信息的情况下,通过不断试错、反复探索和学习来求解最优策略。它被广泛用于围棋、下棋等与游戏有关的智能体决策问题。 Q-Learning算法基于动态规划的思想,使用一个Q函...
2. 算法实现 2.1 算法简要流程 2.2 游戏场景 2.3 算法实现 3. 参考文章 1. 原理讲解 Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励...
(2)Q-learning算法 (3)SARSA算法 (4)比较说明 (5)Q-learning算法源码(以路径规划为例) 写在前面: 本篇总结经典的Model-free算法——Q-learning 和SARSA算法,对Q-learning算法的源码进行了测试和解读! 正文: (1)表格型方法(tabular method) 基本描述: Agent有一张已经训练好的表格,通过查看表格,判断某个状态...
强化学习——Q-learning算法 强化学习——Q-learning算法 假设有这样的房间 如果将房间表⽰成点,然后⽤房间之间的连通关系表⽰成线,如下图所⽰:这就是房间对应的图。我们⾸先将agent(机器⼈)处于任何⼀个位置,让他⾃⼰⾛动,直到⾛到5房间,表⽰成功。为了能够⾛出去,我们将每个节点...
下面给出整个Q-learning算法的计算步骤算法1.1(Q-learning算法)Step1给定参数γ和reward矩阵RStep2令Q=0Step 3For each episode:3.1随机选择一个初始的状态s 3.2若未达到目标,状态则执行以下几步 (1)在当前状态的所有可能行为中选取一个行为a (2)利用选定的行为a得到下一个状态s~ (3)按照转移规则公式计算 Q(...
Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下: 1. 初始化Q值表格,将所有Q值初始化为0。 2. 在每个时间步骤t,智能体观察当前状态st,并根据当前Q值表格选择一个动作at。选择动作的方法可以是ε-greedy策略...
Q-Learning算法 理论 Q-Learning是一种强化学习算法,用于学习在给定状态下采取不同行动的最佳策略。其公式如下: \(Q(s,a) \leftarrow (1 - \alpha) \cdot Q(s,a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s',a'))\) 其中,\(Q(s,a)\)是在状态\(s\)下采取行动\(a\)的预期回...