Q-learning算法是一种off-policy,它产生动作的策略(动作策略)和评估改进的策略(目标策略)不是同一个策略 (2)TD/蒙特卡洛/动态规划 Q-learning采用了时间差分算法(Temporal-Difference,TD),它的基本思想是,在更新当前动作价值函数时,用到了下一个状态的动作价值函数 我关于TD/蒙特卡洛/动态规划的理解并不深刻,可以...
Q-Learning是一种基于值函数的强化学习算法,旨在使智能体(通常是机器或程序)通过与环境的交互学习如何做出最优决策。该算法的核心思想是通过学习一个Q值函数,该函数衡量了在给定状态下采取某个动作的预期回报。Q值函数是Q-Learning算法的核心组成部分,它通过不断迭代和更新来寻找最优策略,以最大化累积奖励。 二、Q-...
Q-Learning算法是一种无模型的强化学习技术,用于学习代理在环境中采取动作的最佳策略。在Q-Learning中,我们通常使用两个主要的矩阵来表示和更新信息:奖励矩阵(R)和Q值矩阵(Q)。 奖励矩阵(R) 奖励矩阵是一个表格,其中每一行代表一个状态(State),每一列代表一个动作(Action)。矩阵中的每个元素Rs,aRs,a表示在特定...
Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下: ...
Q-Learning是一种强化学习算法,用于学习在给定状态下采取不同行动的最佳策略。其公式如下: Q(s,a)←(1−α)⋅Q(s,a)+α⋅(r+γ⋅maxa′Q(s′,a′))Q(s,a)←(1−α)⋅Q(s,a)+α⋅(r+γ⋅maxa′Q(s′,a′)) 其中,Q(s,a)Q(s,a)是在状态ss下采取行动aa的预期回报,αα...
Q-learning是一种经典的强化学习方法,通过迭代地更新Q-value来学习最优策略。在实际应用中,我们可以根据具体问题选择合适的参数和算法,并利用Q-learning来训练智能体在复杂环境中做出最优决策。 通过本文的介绍,相信读者已经对Q-learning这一强化学习方法有了更深入的理解,并且能够在Python中使用代码实现和应用Q-learnin...
Q -learning是一种无模型 强化学习算法。Q-learning的目标是学习一种策略,告诉代理在什么情况下要采取什么行动。它不需要环境的模型(因此内涵“无模型”),并且它可以处理随机转换和奖励的问题,而不需要调整。 对于任何有限马尔可夫决策过程(FMDP),Q -learning在从当前状态开始的任何和所有后续步骤中最大化总奖励的预...
Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励可能最多,当然也会添加一些随机性,使智能体可能选择别的可能当前认为未来奖励并不多的动作...