Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-Learning算法可以应用于多种场景,包括但不限于以下几个示例: 游戏智能体训练:通过Q-Learning算法训练游戏智能体,使其学会在游戏中采取最优的行动策略,以获得最高的得分。例如,在经典的Atari游戏中,Q-Learning算法可以被用来训练游戏智能体,在不断地尝试中学会如何最优化地操作游戏控制器。 机器人路径规划:Q-Learn...
通过不断迭代更新Q(s,a)Q(s,a)的值,Q-Learning算法可以学习到最优策略π∗π∗下的状态-动作对的价值函数Q∗(s,a)Q∗(s,a)。这个过程不需要环境的动态模型,因此Q-Learning是一种无模型的强化学习算法。 1.2 Q-Learning解的推导 贝尔曼方程是动态规划中的核心原理,它将一个状态的价值分解为即时奖励...
在强化学习中,Q-Learning算法是一种常用的方法,可以有效地解决大量的问题,同时也可以通过一些优化方法来提高其效率和准确性。 Q-Learning算法是一种基于值函数的强化学习算法,其主要思想是通过学习价值函数来选择最佳行动。具体地说,价值函数表示对每个状态和行动的优劣程度的估计,可以帮助智能体选择最优策略。通过与...
Q-learning的原理 Q-learning的核心思想是通过不断地更新Q-value来逼近最优价值函数。其更新公式如下: 使用Python实现Q-learning 接下来,我们将使用Python来实现一个简单的Q-learning算法,并应用于一个简单的环境中。 首先,我们需要导入必要的库: 代码语言:javascript ...
Q学习(Q-Learning)是一种强化学习算法,它属于无模型预测算法,用于解决马尔可夫决策过程(MDP)问题。Q学习算法的核心思想是通过学习一个动作价值函数(Q函数),来评估在给定状态下采取某个动作的期望效用。一、基本概念 1. 状态(State):环境的某个特定情况或配置。2. 动作(Action):在给定状态下可以采取的...
1.1 Q-learning 最经典的value-based算法,通过Q-learning可以很好地体验到基于价值方法的优缺点。使用Q table作为价值函数Q(s, a)的载体,算法模型如下: Agent代码如下: """ Q-learning """classAgent:def__init__(self, actions, learning_rate, reward_decay, e_greedy): ...
Q-Learning算法可以应用于多种场景,包括但不限于以下几个示例: l游戏智能体训练:通过Q-Learning算法训练游戏智能体,使其学会在游戏中采取最优的行动策略,以获得最高的得分。例如,在经典的Atari游戏中,Q-Learning算法可以被用来训练游戏智能体,在不断地尝试中学会如何最优化地操作游戏控制器。
河北工业大学的段书用、章霖鑫、韩旭和辛辛那提大学刘桂荣提出了一种具有光滑-直行功能的Q-Learning(SSQL)算法并将其用于移动机器人的路径规划中,在提高算法的收敛速度、缩短路径长度的同时,可确保移动机器人沿规划路径作业的平滑性和安全性。团队将研...