10 平滑版L1损失 SmoothL1Loss 也被称为 Huber 损失函数。 torch.nn.SmoothL1Loss(reduction='mean') 其中 11 2分类的logistic损失 SoftMarginLoss torch.nn.SoftMarginLoss(reduction='mean') 12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='...
所以需要softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算loss。 再回顾PyTorch的CrossEntropyLoss(),官方文档中提到时将nn.LogSoftmax()和 nn.NLLLoss()进行了结合,nn.LogSoftmax() 相当于激活函数 , nn.NLLLoss()是损失函数,将其结合,完整的是否可以叫做softmax+交叉熵损失...
当然,PyTorch的损失函数还远不止这些,在解决实际问题的过程中需要进一步探索、借鉴现有工作,或者设计自己的损失函数。 1.1 二分类交叉熵损失函数 torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') 1. 1.2 交叉熵损失函数 torch.nn.CrossEntropyLoss(weight=None, size_average=Non...
1. **均方误差损失(Mean Squared Error Loss):`nn.MSELoss`** 2. **交叉熵损失(Cross-Entropy Loss):`nn.CrossEntropyLoss`** 3. **二分类交叉熵损失(Binary Cross-Entropy Loss):`nn.BCELoss`** 4. **Kullback-Leibler 散度损失(Kullback-Leibler Divergence Loss):`nn.KLDivLoss`** 5. **交叉熵...
损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数。 我们先定义两个二维数组,然后用不同的损失函数计算其损失值。 代码语言:javascript 复制 importtorch from torch.autogradimportVariableimporttorch.nnasnnimporttorch.nn.functionalasFsample=Variable(torch.ones(2,2))a=tor...
损失函数(Loss Function) 2. PyTorch中内建的损失函数 在torch.nn中内建了很多常用的损失函数,依据用途,可以分为三类: 用于回归问题(Regression loss):回归损失主要关注连续值,例如: L1范数损失(L1Loss), 均方误差损失(MSELoss)等。 用于分类问题(Classification loss):分类损失函数处理离散值,例如,交叉熵损失(Cros...
每一个batch的loss就是: 其中m为当前batch的样本量,n为类别数。 2,Pytorch中CrossEntropy的形式 语义分割的本质是对像素的分类。因此语义分割也是使用这个损失函数。首先看代码定义: 1 2 3 4 5 6 7 def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, ...
以后,当你使用PyTorch内置的二分类交叉熵损失函数时,只要保证输入的预测值和真实标签的维度一致(N,...),且输入的预测值是一个概率即可。满足这两点,一般就能避免常见的错误了。 (BCELoss的使用) 关于二分类交叉熵的介绍就到这里,接下来介绍多分类交叉熵。
L2Loss,常称为MSE,在PyTorch中被称为torch.nn.MSELoss,是通过计算目标值与模型输出之间的差值平方来衡量损失的。公式为 (y_true - y_pred)^2。SmoothL1Loss是一种平滑版本的L1Loss,它在预测值和ground truth之间的差别较小时使用L2Loss,在差别较大时使用L1Loss。公式为 max(0.5*(|y_true ...
1. 直接利用torch.Tensor提供的接口 自定义损失函数的一种简单方法是直接利用PyTorch的张量操作。以计算一个三元组损失(Triplet Loss)为例,只需定义损失函数的计算逻辑并调用torch提供的张量计算接口。将损失函数封装为一个类,继承自nn.Module,可以方便地在训练过程中使用。实例化后,可以通过调用该类...