使用lightningmodule.load_from_checkpoint 方法来加载模型权重。 python checkpoint_path = "path/to/your/pretrained_model.ckpt" model = MyLightningModel.load_from_checkpoint(checkpoint_path) (可选)对加载的模型进行测试或评估: 你可以通过打印模型结构或进行前向传播测试来验证模型是否成功加载。 python # 打...
若是从 checkpoint 初始化模型,可以向trainer传入参数empty_init=True,这样在读取 checkpoint 之前模型的权重不会占用内存空间,且速度更快。 withtrainer.init_module(empty_init=True): model = MyLightningModule.load_from_checkpoint("my/checkpoint/path.ckpt") trainer.fit(model) 要注意,此时必须保证模型的每个...
# 获取恢复了权重和超参数等的模型 model=MODEL.load_from_checkpoint(checkpoint_path='my_model_path/hei.ckpt')# 修改测试时需要的参数,例如预测的步数等 model.pred_step=1000# 定义trainer,其中limit_test_batches表示取测试集中的0.05的数据来做测试 trainer=pl.Trainer(gpus=1,precision=16,limit_test_batc...
self.model = ColaModel.load_from_checkpoint(model_path) self.model.eval() self.model.freeze() Predict() 方法接受文本输入,使用分词器对其进行处理,并返回模型的预测: def predict(self, text): inference_sample = {"sentence": text} processed = self.processor.tokenize_data(inference_sample) ...
最优模型默认保存在 trainer.checkpoint_callback.best_model_path 的目录下,可以直接加载。 print(trainer.checkpoint_callback.best_model_path) print(trainer.checkpoint_callback.best_model_score) 1. 2. model_clone = Model.load_from_checkpoint(trainer.checkpoint_callback.best_model_path) ...
❓ Questions and Help What is your question? load_from_checkpoint: TypeError: init() missing 1 required positional argument I have read the issues before, but the things different is my LightningModule is inherited from my self-defined Li...
checkpoint_callback.best_model_score) lightning_logs/version_10/checkpoints/epoch=8-step=15470.ckpt tensor(0.0376, device='cuda:0') model_clone = Model.load_from_checkpoint(trainer.checkpoint_callback.best_model_path) trainer_clone = pl.Trainer(max_epochs=3,gpus=1) result = trainer_clone....
model=MyLightningModule(hparams)trainer.fit(model)trainer.save_checkpoint("example.ckpt") 3.加载(load_from_checkpoint) model = MyLightingModule.load_from_checkpoint(PATH) 4.加载(Trainer) model = LitModel() trainer = Trainer() # 自动恢复模型 trainer.fit(model, ckpt_path="some/path/to/my_che...
model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator()) 还可以将完整对象(如dict或Namespace)保存到检查点。 # 使用argparse.Namespace class LitMNIST(LightningModule): def __init__(self, conf, *args, **kwargs): ...
Bug description I want to load a trained checkpoint to "gpu" in colab, but it seems that load_from_checkpoint loads two copies, and the device of the model is "cpu". The memory of both host and gpu is occupied. If i use: model.to(torch.d...