下载解压后将bin以及include文件夹复制粘贴到步骤一种cuda安装目录下,同cudnn,直接复制粘贴会自动合并;注意这里lib文件夹不能直接复制合并,因为它里边的文件夹需要复制到cuda/lib中D:\CUDA11.7\lib\x64目录下,因此后续还需要为此新建一个环境变量。 再将lib中的文件拷贝到cuda的lib/x86目录下: 添加环境变量 将上图...
1、打开以下链接下载CUDA 2、选择对应电脑系统的软件版本 3、查看安装在计算机的CUDA版本 注:因为跑项目配置不同版本的pytorch是很常见的事情,所以配置不同版本的CUDA也很正常。 4、管理CUDA程序文件夹 ①将刚下载的CUDA安装程序移动至V12.1文件夹; ②点击鼠标右键,选择“管理员运行”;③点击“OK” 5、CUDA安装界...
显卡的 CUDA 版本:这是指通过显卡驱动安装的 CUDA 版本。可以通过nvidia-smi命令查看系统中当前安装的 CUDA 版本。 CUDA 版本兼容性: 较新的 CUDA 版本通常向后兼容旧 GPU 但新GPU(如 Ampere 架构)需要较新的 CUDA 版本才能充分发挥性能 cudatoolkit其与系统CUDA版本的关系: cudatoolkit可以与系统级CUDA共存 通常...
在桌面右击,打开NVIDIA 控制面板,点击系统信息,我们可以看到自己驱动程序版本,如果没有gpu驱动,建议先安装NVIDIA驱动 点击组件查看支持cuda的版本号,在这支持cuda 11.6.1 安装cudahttps://developer.nvidia.com/cuda-toolkit-archive 根据自己的机型 双击安装,直接一路下去,记得把加入环境变量勾上 为了检验我们cuda是否真...
①python版本、cuda版本一一对应 ②必须全新的python环境,旧python环境可能有包之间的冲突,最新的python版本可能不支持pytorch ③pytorch里面的几个计算库都能对应上各自的操作系统 下面开始讲解如何能一一对应上: 一、工具的准备 :anaconda,迅雷 (这两个软件只是为了方便,不安装也能用,只是很麻烦而已,因此安装不做介绍...
一、cuda安装 下载地址:cuda下载官网链接 1.1、cuda版本选择 这里有个前置工作需要搞清楚的,就是自己的显卡支持的cuda版本。 点击电脑左下角开始菜单找到 在这里插入图片描述 点击【帮助】下【系统信息】 在这里插入图片描述 点击【组件】: 在这里插入图片描述 ...
一、Cuda 12.1的安装 首先,我们需要从NVIDIA官网下载Cuda 12.1的安装包。在下载页面,选择适合你操作系统的版本进行下载。下载完成后,双击运行安装包,按照提示进行安装。在安装过程中,你可以自定义安装选项,只选择安装CudaRuntime,以减少不必要的系统占用。 二、PyTorch GPU版本的安装 在Cuda 12.1安装完成后,我们就可以...
本次由于选择的PyTorch是1.4版本,支持的是CUDA10.1,所以CUDA安装的版本是10.1。 一、安装Anaconda 1、win10 Anaconda官网https://www.anaconda.com/distribution/如下图,选择 根据自己的电脑位数进行选择,下载后安装即可。注意一点 需要勾选这两个选项。
步骤3:安装CUDA Toolkit 从NVIDIA官方网站下载并安装与您的GPU兼容的CUDA Toolkit(版本12.1)。 步骤4:配置环境变量 将CUDA Toolkit的安装路径添加到系统环境变量中,以便PyTorch能够正确找到CUDA。 步骤5:创建虚拟环境 使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。