1、主干特征提取网络:DarkNet53 => CSPDarkNet53 2、特征金字塔:SPP,PAN 3、分类回归层:YOLOv3(未改变) 4、训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减 5、激活函数:使用Mish激活函数 以上并非全部的改进部分,还存在一些其它的改进,由于YOLOV4使用的改进实在太多了,很难完全...
importtorchimporttorch.nnasnnclassYOLOv4(nn.Module):def__init__(self,num_classes):super(YOLOv4,self).__init__()# Backbone: Feature extraction network (CSPDarknet)self.backbone=self.create_backbone()# Neck: Constructs a feature pyramidself.neck=self.create_neck()# Head: Outputs predictionsse...
近日,有研究者在GitHub 上开源了一个项目:基于PyTorch深度学习框架的YOLOv4复现版本,该版本基于YOLOv4作者给出的实现AlexeyAB/darknet,并在PASCAL VOC、COCO和自定义数据集上运行。 项目地址:https://github.com/argusswift/YOLOv4-PyTorch 除此以外,该项目还向主干网络添加了一些有用的注意力方法,并实现了mobilenet...
这个函数可以根据 YOLOv4 的输出进行实现,具体细节需要依据实际输出的格式进行调整。 结论 通过以上步骤,我们成功地用 PyTorch 实现了 YOLOv4 的网络框架,并进行了简单的图像测试。整体流程如下: 环境准备,并安装必要的库。 下载并加载权重文件。 定义YOLOv4 模型结构。
基于Pytorch搭建自己的YoloV4目标检测平台,环境搭建+项目实战,看完就唐宇迪AI编辑于 2025年04月15日 22:26 课程配套资料+YOLO算法资料包 1,YOLOV1~V10、YOLO-World、YOLOX系列目标检测算法论文和源码资料 2,目标检测领域细分方向顶会论文 3,YOLO目标检测算法学习路线图...
近日,有研究者在 GitHub 上开源了一个项目:基于 PyTorch 深度学习框架的 YOLOv4 复现版本,该版本基于 YOLOv4 作者给出的实现 AlexeyAB/darknet,并在 PASCAL VOC、COCO 和自定义数据集上运行。 项目地址:https://github.com/argusswift/YOLOv4-PyTorch
一、PyTorch版YOLOv4检测人算法 YOLOv4算法YOLOv4是一种目标检测算法,它采用了类似于YOLOv3的架构,但在一些关键模块上进行了改进,以提升检测准确性和速度。与YOLOv3相比,YOLOv4采用了轻量级的网络结构,引入了空洞卷积和CBAM注意力模块等新技术,并采用了多尺度特征融合策略,以提高目标检测的准确性。此外,YOLOv4还采用...
近日,有研究者在 GitHub 上开源了一个项目:基于 PyTorch 深度学习框架的 YOLOv4 复现版本,该版本基于 YOLOv4 作者给出的实现 AlexeyAB/darknet,并在 PASCAL VOC、COCO 和自定义数据集上运行。 项目地址:https://github.com/argusswift/YOLOv4-PyTorch 除此以外,该项目还向主干网络添加了一些有用的注意力...
基于深度学习神经网络YOLOv4目标检测的手势识别系统,其能识别的手势有8种,见如下: 第一步:YOLOv4介绍 YOLOv4是一种目标检测算法,它在精度和速度之间取得了最佳的平衡。它是YOLO(You Only Look Once)系列算法的最新版本,通过将目标检测任务转化为一个回归问题,实现了实时目标检测。YOLOv4采用了一系列的调优手段...
把上面的内容写到一个文件中,如yolov4_aipp.cfg,然后调用atc转模型[4]: atc --mode=0--model yolov4_1_3_416_416_static.onnx --framework=5--output=yolov4_1_3_416_416_aipp --out_nodes="confs;boxes"--soc_version=Ascend310 --insert_op_conf=yolov4_aipp.cfg ...