近几年,随着深度学习指数级发展,深度学习的框架使用在人工智能领域也起着举足轻重的作用,这其中包括Tensoflow、Pytorch、Keras、paddle等等。那么面对这些框架,究竟使用哪个呢?其实,这几个框架都有各自的优点和缺点,大家了解后可以根据自己的情况进行选择;现在Keras API都融入tensorflow2.0进去了,因此学tensorflow就...
严格意义上讲,Keras并不能称为一个深度学习框架,它更像一个深度学习接口,它构建于第三方框架之上。Keras的缺点很明显:过度封装导致丧失灵活性。入门最简单,但是不够灵活,使用受限。 04 Caffe/Caffe2 Caffe的优点是简洁快速,缺点是缺少灵活性。不同于Keras因为太多的封装导致灵活性丧失,Caffe灵活性的缺失主要是因为它...
Keras是基于Tensorflow用纯python编写的深度学习框架,也就是说它是在Tensorflow的基础上再次集成的;所以,他的代码会更加简洁方便,适于初学者;但因为它是在Tensorflow的框架上再次封装的,那么运行速度肯定就没有Tensorflow快了。 其主要优点在于: 用户友好 Keras可以说是专为人类的API;Keras遵循减少认知困难的最佳实践:Kera...
Keras vs TensorFlow Keras 是一个高层次的神经网络 API,可以运行于 TensorFlow、Theano、CNTK 等后端框架之上,下面是 Keras 和 TensorFlow 的简要对比: 功能:Keras 提供了一组易于使用的高层次 API,可以快速地搭建和训练深度神经网络,而 TensorFlow 则提供了更加底层的 API,可以更好地支持自定义网络结构和算法。 编...
更重要的是,Keras+TensorFlow集成是无缝的,允许您将原始TensorFlow代码直接放入Keras模型中。 使用TensorFlow中的Keras给你最好的两个世界: 您可以使用Keras提供的简单、直观的API来创建模型。 Keras API本身类似于Scikit-learn,可以说是机器学习API的“金标准”。
2. TensorFlow、PyTorch、Keras易用性对比 TensorFlow常因其范围狭小的API而被诟病。相比之下,PyTorch对用户则更为友好,使用也更加简单。总之,PyTorch与Python语言的融合更为紧密,也更加自然。而在TensorFlow框架中编写程序时,程序员常感到自己与模型之间仿佛隔着一堵砖墙,只留下了几个洞孔用于交流。 下文将讨论并比较...
Keras是一个在Python中使用的高级神经网络库,它运行在TensorFlow之上。Keras的设计理念是“用户友好,模块化,易于扩展”,这使得Keras对于初学者非常友好。然而,对于一些复杂的模型,Keras可能没有TensorFlow和PyTorch那么强大。 编辑 4.Scikit-learn:Scikit-learn是一个广泛用于统计建模和机器学习的Python库。它提供了大量的...
Keras是基于Tensorflow用纯python编写的深度学习框架,也就是说它是在Tensorflow的基础上再次集成的;所以,他的代码会更加简洁方便,适于初学者;但因为它是在Tensorflow的框架上再次封装的,那么运行速度肯定就没有Tensorflow快了。 其主要优点在于: 用户友好 Keras可以说是专为人类的API;Keras遵循减少认知困难的最佳实践:Kera...
Keras 和 PyTorch基准项目:https://github.com/cgnorthcutt/benchmarking-keras-pytorch 两大框架的性能与易用性 作为TensorFlow的高度封装,Keras 的抽象层次非常高,很多 API 细节都隐藏了起来。虽然 PyTorch 比TensorFlow的静态计算图更容易使用,但总体上 Keras 隐藏的细节更多一些。而对于性能,其实各框架都会经过大量的...
Keras 于 2017 年年中被采用并集成到 TensorFlow 中。用户可以通过 tf.keras 模块访问它。但是,Keras 库仍然可以单独和独立运行。什么是 PyTorch?PyTorch是一个相对较新的基于 Torch 的深度学习框架。由 Facebook 的 AI 研究小组开发并于 2017 年在 GitHub 上开源,用于自然语言处理应用程序。PyTorch 以简单、易...