Tensors and Dynamic neural networks in Python with strong GPU acceleration - Add view_as_real, view_as_complex for complex tensors (#39099) · pytorch/pytorch@8ec2ae9
q_rope=torch.view_as_complex(q.float().reshape(B, n_heads, T_current, -1, 2)) k_rope=torch.view_as_complex(k.float().reshape(B, n_heads, T_current, -1, 2)) freqs_cis_broadcast=freqs_cis.unsqueeze(0).unsqueeze(0) q_out=torch.view_as_real(q_rope*freqs_cis_broadcast).flatt...
Pytorch export onnx: RuntimeError Exporting the operator view_as_complex to ONNX opset version 9 is not supported. Please open a bug to request ONNX export support for the missing operator also :onnx/onnx#3173 cc@houseroad@spandantiwari@lara-hdr@BowenBao@neginraoof ...
., d_k/2) q_rope=torch.view_as_complex(q.float().reshape(B, n_heads, T, -1, 2)) k_rope=torch.view_as_complex(k.float().reshape(B, n_heads, T, -1, 2)) # 调整 freqs_cis 形状以广播: (T, d_k/2) -> (1, 1, T, d_k/2) freqs_cis_broadcast=freqs_cis.unsqueeze(...
创建一个complex128类型的张量。 使用view_as_real将复数张量转换为实数张量。 代码示例: importtorch# 创建一个 complex128 类型的张量complex_tensor=torch.tensor([1+2j,3+4j,5+6j],dtype=torch.complex128)# 打印原始复数张量print("Original complex tensor:")print(complex_tensor)# 使用 view_as_real 转...
# 其次:将xq和xk转换为复数,因为旋转矩阵只适用于复数xq_=torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1,2)).to(device)#xq_:[bsz, seq_len, n_heads, head_dim/2]xk_=torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1,2)).to(device)#xk_:[bsz, seq...
数据的维度和形状需符合傅里叶变换函数的参数要求 。实值信号进行傅里叶变换后 ,结果一般是复值张量 。复值张量包含实部和虚部 ,分别存储不同频域信息。可通过torch.view_as_real函数将复值张量转为实值张量形式 。若想从实值张量变回复值张量 ,可使用torch.view_as_complex函数 。在图像领域 ,傅里叶变换可...
'So she was considering in her own mind (as well as she could, for thehot day made her feel very sleepy and stupid), whether the pleasureof making a daisy-chain would be worth the trouble of getting up andpicking th...
(..., d_k/2) q_rope = torch.view_as_complex(q.float().reshape(B, n_heads, T, -1, 2)) k_rope = torch.view_as_complex(k.float().reshape(B, n_heads, T, -1, 2)) # 调整 freqs_cis 形状以广播: (T, d_k/2) -> (1, 1, T, d_k/2) freqs_cis_broadcast = freqs_...
reshape与view的区别如下: view只能改变连续(.contiguous())的tensor,如果已经对tensor进行了permute、transpose等操作,tensor在内存中会变得不连续,此时调用view会报错。且view方法与原来的tensor共享内存。 reshape再调用时自动检测原tensor是否连续,如果是,则等价于view;如果不是,先调用.contiguous(),再调用view,此时返...