GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Why GitHub? Team Enterprise Explore Marketplace Pricing Sign inSign up createrfang/PyTorch-VAE forked fromAntixK/PyTorch-VAE Watch0 Star0 Fork295 Code Pull requests Actions Projects Security Insights More master PyTorch-VAE/run.py/ Jump to ...
VAE PyTorch Implementation PyTorch implementation ofAuto-Encoding Variational Bayes, arxiv:1312.6114 Installation $ git clone https://github.com/kuc2477/pytorch-vae && cd pytorch-vae $ pip install -r requirements.txt CLI Implementation CLI is provided bymain.py ...
Conditional Variational Autoencoder(CVAE)1是Variational Autoencoder(VAE)2的扩展,在VAE中没有办法对生成的数据加以限制,所以如果在VAE中想生成特定的数据是办不到的。比如在mnist手写数字中,我们想生成特定的数字2,VAE就无能为力了。 因此,CVAE通过对潜层变量和输入数据施加约束,可以生成在某种约束条件下的数据。
Why GitHub? Team Enterprise Explore Marketplace Pricing Sign inSign up kuc2477/pytorch-vae Watch4 Star24 Fork3 Code Issues Pull requests Actions Projects Security Insights More master pytorch-vae/data.py/ Jump to 58 lines (48 sloc)1.51 KB ...
Pytorch Lightning >= 0.6.0 (GitHub Repo) CUDA enabled computing device Installation $ git clone https://github.com/AntixK/PyTorch-VAE $ cd PyTorch-VAE $ pip install -r requirements.txt Usage $ cd PyTorch-VAE $ python run.py -c configs/<config-file-name.yaml> ...
VAE-tutorial A simple tutorial of Variational AutoEncoder(VAE) models. This repository contains the implementations of following VAE families. Variational AutoEncoder (VAE, D.P. Kingma et. al., 2013) Vector Quantized Variational AutoEncoder (VQ-VAE, A. Oord et. al., 2017) Requirements Anaconda...
pytorch-vae/model.py/ Jump to Cannot retrieve contributors at this time 147 lines (123 sloc)4.29 KB RawBlame importtorch fromtorch.autogradimportVariable fromtorchimportnn classVAE(nn.Module): def__init__(self,label,image_size,channel_num,kernel_num,z_size): ...
Check also our blogpost (https://nicola-decao.github.io/s-vae).Don't use Pytorch? Take a look here for a tensorflow implementation!Dependenciespython>=3.6 pytorch>=0.4.1: https://pytorch.org scipy: https://scipy.org numpy: https://www.numpy.org...
model=VAE().to(device) optimizer=optim.Adam(model.parameters(),lr=1e-3) # Reconstruction + KL divergence losses summed over all elements and batch defloss_function(recon_x,x,mu,logvar): BCE=F.binary_cross_entropy(recon_x,x.view(-1,784),reduction='sum') ...