我们将整个UNet网络拆分为多个模块进行讲解。 DoubleConv模块: 先看下连续两次的卷积操作。 从UNet网络中可以看出,不管是下采样过程还是上采样过程,每一层都会连续进行两次卷积操作,这种操作在UNet网络中重复很多次,可以单独写一个DoubleConv模块: 代码语言:javascript 复制 importtorch.nnasnnclassDoubleConv(nn.Module):...
Unet所使用的加强特征提取网络是一个U的形状。 利用第一步我们可以获得五个初步的有效特征层,在加强特征提取网络这里,我们会利用这五个初步的有效特征层进行特征融合,特征融合的方式就是对特征层进行上采样并且进行堆叠。 为了方便网络的构建与更好的通用性,我们的Unet和上图的Unet结构有些许不同,在上采样时直接进行...
Github源码下载地址为:https://github.com/bubbliiiing/unet-pytorch Unet实现思路 一、预测部分 1、主干网络介绍 Unet的主干特征提取部分由卷积+最大池化组成,整体结构与VGG类似。 本文所采用的主干特征提取网络为VGG16,这样也方便使用imagnet上的预训练权重。 VGG是由Simonyan 和Zisserman在文献《Very Deep Convolut...
创建unet_parts.py文件,编写如下代码: """ Parts of the U-Net model """https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_parts.py"""importtorchimporttorch.nnasnnimporttorch.nn.functionalasFclassDoubleConv(nn.Module):"""(convolution => [BN] => ReLU) * 2"""def__init__(se...
二、UNet网络结构 在语义分割领域,基于深度学习的语义分割算法开山之作是FCN(Fully Convolutional Networks for Semantic Segmentation),而UNet是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。 UNet论文地址:点击查看 研究一个深度学习算法,可以先看网络结构,看懂网络结构后,再Loss计算方法、训练方法...
2.1 UNet基本组件编码 2.1.1 卷积层编码 class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),...
Unet++(pytorch实现) 向AI转型的程序员都关注了这个号👇👇👇 Unet++网络 Dense connection Unet++继承了Unet的结构,同时又借鉴了DenseNet的稠密连接方式(图1中各种分支)。 作者通过各层之间的稠密连接,互相连接起来,就像Denset那样,前前后后每一个模块互相作用,每一个模块都能看到彼此,那对彼此互相熟悉,分割...
简介: UNet++详细解读(二)pytorch从头开始搭建UNet++ Unet++代码 网络架构 黑色部分是Backbone,是原先的UNet。 绿色箭头为上采样,蓝色箭头为密集跳跃连接。 绿色的模块为密集连接块,是经过左边两个部分拼接操作后组成的 Backbone 2个3x3的卷积,padding=1。 class VGGBlock(nn.Module): def __init__(self, in_...
Unet++ 为了更直观一些,我把代码中的所有符号都和网络结构中对应上了。 数据集准备 数据集使用Camvid数据集,可在CamVid数据集的创建和使用-pytorch中参考构建方法。 https://blog.csdn.net/yumaomi/article/details/124786867 训练结果 原文地址 https://blog.csdn.net/yumaomi/arti...
1.1 我用UNet模型来检测表格的行列线,模型(基于pytorch)训练好之后预测准确,想转换成ONNX模型来部署,结果遇到了转换后的ONNX模型推理结果有误的问题 2 问题排查: 2.1 输入图片、预处理以及后处理是否一致 pytorch模型下推理输入的是图片的tensor,输出保存的也是4维tensor;ONNX模型推理输入的也是图片的像素array,输出...