参考了上面链接中另一个实现的截断正态分布生成函数代码如下: def truncated_normal_(self,tensor,mean=0,std=0.09): with torch.no_grad(): size = tensor.shape tmp = tensor.new_empty(size+(4,)).normal_() valid = (tmp < 2) & (tmp > -2) ind = valid.max(-1, keepdim=True)[1] tens...
weights = tf.Variable( tf.truncated_normal([hidden1_units, hidden2_units], stddev=1.0 / math.sqrt(float(hidden1_units))), name='weights') biases = tf.Variable(tf.zeros([hidden2_units]), name='biases') hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) with tf.name_scop...
在神经网络中,隐藏层的作用主要是提取数据的特征(feature)。这里的权重参数采用了 tensorflow.truncated_normal() 函数来进行生成,与上次采用的 tensorflow. random_normal() 不一样。这两者的作用都是生成指定形状、期望和标准差的符合正太分布随机变量。区别是 truncated_normal 函数对随机变量的范围有个限制(与期望的...
importtensorflow as tf init_random= tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) init_truncated= tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) with tf.Session() as sess: x= tf.get_variable('x', shape=[10], init...
有许多方法来初始化嵌入权重,并没有一个统一的答案,例如,fastai使用一种叫做截断标准初始化器(Truncated Normal initializer)的东西。在我的实现中,我刚刚用(0,11 /K)的uniform值初始化了嵌入(随机初始化在我的例子中运行得很好!)其中K是嵌入矩阵中因子的数量。K是一个超参数,通常是由经验决定的——它不...
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05)) biases = tf.Variable(tf.constant(0.05, shape=[num_outputs])) output = tf.matmul(fc7, weights) + biases pred = tf.nn.softmax(output) # Now, you run this with fine-tuning data in sess.run()...
TruncatedNormal.py requirements.txt setup.py torch_truncnorm Truncated Normal distribution in PyTorch. The module provides: TruncatedStandardNormalclass - zero mean unit variance of the parent Normal distribution, parameterized by the cut-off range[a, b](similar toscipy.stats.truncnorm); ...
全连接层被以下 Python 代码段所定义,详见代码段 2。W = tf.Variable( tf.truncated_normal([s...
tf.glorot_normal_initializer() 初始化为与输入输出节点数相关的截断正太分布随机数 stddev=2fan_in+fan_out 其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。 变尺度正态、均匀分布 tf.variance_scaling_initializer(scale=1.0,mode="fan_in", distribution="truncated_normal") ...
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05)) biases = tf.Variable(tf.constant(0.05, shape=[num_outputs])) output = tf.matmul(fc7, weights) + biases pred = tf.nn.softmax(output) # Now, you run this with fine-tuning data in sess.run() ...