这是因为torch.from_numpy()函数创建的张量与原始NumPy数组共享数据,这可能导致在某些操作中产生不必要的开销。对于大型数据集,使用torch.tensor()或torch.as_tensor()函数可能更高效,因为它们不会与原始NumPy数组共享数据。 内存占用:与torch.from_numpy()创建的张量共享数据的NumPy数组将无法被垃圾回收,因为它们仍然...
函数torch.from_numpy()提供支持将numpy数组转换为Pytorch中的张量。它期望输入为numpy数组(numpy.ndarray)。输出类型为张量。返回的张量和ndarray共享相同的内存。返回的张量不可调整大小。 当前它接受具有numpy.float64,numpy.float32,numpy.float16,numpy.int64,numpy.int32,numpy.int16,numpy.int8,numpy.uint8和nu...
import torch import numpy as np data = np.array([1, 2, 3]) Tensor = torch.Tensor(data) tensor = torch.tensor(data) from_numpy = torch.from_numpy(data) as_tensor = torch.as_tensor(data) print('改变前:') print(Tensor) print(tensor) print(from_numpy) print(as_tensor) data[0] =...
torch_tensor = torch.tensor([1, 2, 3, 4, 5]) numpy_array = torch_tensor.numpy() # 数据预处理中的转换 numpy_array = np.array([1, 2, 3, 4, 5]) torch_tensor = torch.from_numpy(numpy_array) torch_tensor = torch_tensor.float() # 转换为浮点型 torch_tensor = (torch_tensor - ...
Tensor 和tensor唯一区别在于方法名中t的大小写,大写字母T(Tensor)是类构造函数,小写(tensor)是工厂函数。其中,torch.as_tensor 和 torch.from_numpy 也是工厂函数。构造函数在构造一个张量时使用全局默认值,而工厂函数则根据输入推断数据类型。通过torch.get_default_dtype()可以查看dtype的全局默认...
Pytorch的数据结构用Tensor表示,它与Numpy相似,二者可以共享内存,且之间的转换非常方便和高效。不过它们也有不同之处,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。 从接口可分为两类: torch.function() ...
在pytorch中,把numpy.array数据转换到张量tensor数据的常用函数是torch.from_numpy(array)或者torch.Tensor(array),第一种函数更常用。下面通过代码看一下区别: importnumpyasnpimporttorch a=np.arange(6,dtype=int).reshape(2,3) b=torch.from_numpy(a) ...
numpy array:[[-123][456]]tensor:tensor([[-1,2,3],[4,5,6]],dtype=torch.int32) 二、依据数值创建 2.1 torch.zeros() 功能:依size 创建全 0 张量 size : 张量的形状 , 如 (3,3),(3,224,224) out : 输出的张量 layout 内存中布局形式 , 有strided(默认), sparse_coo(这个通常稀疏矩阵时...
1.从 NumPy 转 PyTorch:torch_tensor = torch.from_numpy(numpy_array)这就像是把你刚买的苹果从袋子里拿出来,放到盘子里展示。没啥复杂的,只是换了个容器。2.从 PyTorch 转 NumPy:numpy_array = torch_tensor.numpy()这招反向操作就像是把盘子里的苹果重新放回袋子里。简简单单,轻松搞定!就这样,数据...
1 tensor->array(tensor.numpy()) x=torch.ones(3,2) y=x.numpy() print(x) print(y) 底层是一样的数据 x.add_(1) print(x) print(y) 但是,如果不用add命令,而是用+,则两者又会不一样 x=x+z print(x) print(y) 2 array->tensor(torch.from_numpy(array)) ...