训练时,输入一般为tensor,但在计算误差时一般用numpy;tensor和numpy的转换采用numpy()和from_numpy这两个函数机型转换。值得注意的是,这两个函数所产生的tensor和numpy是共享相同内存的,而且两者之间转换很快。
list、numpy、tensor两两之间的相关转换 list 转 numpy ndarray = np.array(list) # 具体例子如下 import numpy as np a_list = [1, 2, 3] a_np = np.array(a_list) numpy 转 list list = ndarray.tolist() #具体例子如下所示 import numpy as np a_list = [1, 2, 3] a_np = np.array...
1.0], 是float所以图片的numpy转tensor有些不一样 如果是直接按照上面的方法 x = torch.from_array(x), 得到的tensor值是0-255的 得到0-1.0的话 import torchvision.transforms as transforms import matplotlib.pyplot as plt img = plt.imread('wave.jpg') print(img.shape) # numpy数组格式为(...
2.0,3.0]# 将列表转换为NumPy数组my_array=np.array(my_list,dtype=np.float32)# 现在my_array是一个32位浮点数的NumPy数组print(my_array)```### 使用TensorFlow```pythonimporttensorflow as tf# 假设你有一个Python列表my_list=[1.0,2.0,3.0]# 将列表转换为TensorFlow张量my_tensor=tf.convert_to_tensor...
python内置的列表、numpy中的数组、 pytorch中的tensor都可以在cpu上使用,tensor类型还可以用在gpu上。对于tensor类型的数据,可以用.to('cuda:0')转移到gpu上,用.tolist()可以将tensor类型的数据转换为列表(列表没有.device属性),gpu上的tensor不能直接转换成numpy,要先转到cpu上,再用.numpy()转换成数组类型。将...
一、Tensor类型 tensor有不同的数据类型,每种类型分别对应有CPU版本GPU(除了halfensor,它只有GPU版本),默认的tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认是GPU版本,所有的操作都将在GPU上进行)。 In [102]: import torch as t ...
tensor([1., 1., 1., 1., 1.]) 进行转换 b =a.numpy()print(b) 输出 [1. 1. 1. 1. 1.] 注意,转换后的tensor与numpy指向同一地址,所以,对一方的值改变另一方也随之改变 a.add_(1)print(a)print(b) numpy to tensor importnumpy as np ...
val= torch.tensor([item.cpu().detach().numpy() for item in val]).cuda() 这是因为gpu上的tensor不能直接转为numpy; 需要先在cpu上完成操作,再回到gpu上 如果是在cpu上,上面的.cpu()和.cuda()可以省略 torch.Tensor转list list = tensor.numpy().tolist() # 先转 numpy,后转 list ...
在使用PyTorch将Tensor转为list时,需要注意以下事项。首先,要考虑到内存占用问题。如果张量较大,转换为一个列表可能会占用大量内存。在这种情况下,可以考虑使用其他数据结构或算法来减少内存占用。其次,要注意计算效率问题。虽然tolist()方法本身的速度较快,但在处理大型张量时,列表操作可能比张量运算慢。因此,在追求效...
在PyTorch中,torch.tensor()函数用于直接从Python的数据结构(如列表、元组或NumPy数组)中创建一个新的张量。 复制 """ data:数据,可以是list,numpy dtype:数据类型,默认与data对应device:张量所在的设备(cuda或cpu)requires_grad:是否需要梯度 pin_memory:是否存于锁存内存""" ...