AI代码解释 #classRegress_Loss(torch.nn.Module):def__init__(self):super(Regress_Loss,self).__init__()defforward(self,x,y):y_shape=y.size()[1]x_added_dim=x.unsqueeze(1)x_stacked_along_dimension1=x_added_dim.repeat(1,NUM_WORDS,1)diff=torch.sum((y-x_stacked_along_dimension1)**...
#define triplet loss functionclasstriplet_loss(nn.Module):def__init__(self):super(triplet_loss,self).__init__()self.margin=0.2defforward(self,anchor,positive,negative):pos_dist=(anchor-positive).pow(2).sum(1)neg_dist=(anchor-negative).pow(2).sum(1)loss=F.relu(pos_dist-neg_dist+self...
loss=criterion(input,targets) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 除此之外,常见的损失函数还有BCE-Dice Loss,Jaccard/Intersection over Union (IoU) Loss,Focal Loss… classDiceBCELoss(nn.Module): def__init__(self,weight=None,size_average=True): super(DiceBCELo...
在上面的代码中,我们首先定义了一个简单的神经网络模型SimpleNN,并使用均方误差损失函数MSELoss来衡量模型的预测结果和真实标签的差异。然后我们构造了简单的训练数据,并在训练循环中通过print语句输出每个epoch的loss值。 流程图 NoYesStartDefine modelDefine optimizer and loss functionPrepare training dataStart training ...
(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)returnx# Hyperparametersinput_dim = X_train.shape[1]learning_rate =0.001n_epochs =100# Initialize the model, loss function, and optimizermodel = SimpleNN(input_dim)cr...
fromtorch.optimimportAdam# Define the loss function with Classification Cross-Entropy loss and an optimizer with Adam optimizerloss_fn = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001) 使用训练数据训练模型。
def forward(self, x): x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x# Create the model instance and wrap it in DataParallelmodel = nn.DataParallel(Net())# Define the loss function and optimizercriterion = nn.CrossEntropyLoss()optimizer = optim.Adam(model....
out = self.linear(x) return out 三、训练模型定义好模型后,我们就可以开始训练了。在PyTorch中,训练模型需要定义损失函数和优化器,然后使用循环不断地迭代训练集,计算损失并更新模型参数。```python Define loss function and optimizer criterion = nn.BCELoss() # Binary cross-entropy loss for binary classif...
问PyTorch中具有自定义反向函数的损失--简单均方误差示例中的爆炸性损失EN因此,将您的反向函数更改为:...
model=VisionTransformer(patch_drop_rate=0.5).cuda(device)# define the lossfunctionloss_fn=torch.nn.CrossEntropyLoss()# define the training optimizer optimizer=torch.optim.SGD(model.parameters(),lr=0.001,momentum=0.9)# use random dataclassFakeDataset(Dataset):def__len__(self):return1000000def__...