加载模型:可以加载第一个以模型形式保存的文件;也可以加载第二个以模型的参数形式保存的文件,并且能把其转化成模型。 Load model: You can load the first file saved in the form of a model; you can also load the second file saved in the form of model parameters, and convert it into a model. ...
实际上,mymodel.save()和mymodel.load()方法只是封装了torch.save()、torch.load和torch.load_state_dict()三个基础函数。首先,我们来看一下mymodel.save()的定义:def save(self, model_path, weights_only=False):mymodel对象的save()方法通过torch.save()实现模型存储。需要注意的是参数weights...
torch.save(model.state_dict(), PATH) 1. 加载: model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval() 1. 2. 3. 在保存模型进行推理时,只需保存经过训练的模型的学习参数即可。使用 torch.save() 函数 保存模型的 state_dict 将为以后恢复模型提供最大的...
the_model=TheModelClass(*args,**kwargs)# declare the_model as a object of TheModelClass the_model.load_state_dict(torch.load(PATH))# load parameters from PATH 2. Save all structure and parameters 1 2 3 torch.save(the_model, PATH) the_model=torch.load(PATH) 3. Get parameters of cer...
实际上,mymodel.save()和mymodel.load()两个方法只是封装了torch.save()、torch.load和torch.load_state_dict()三个基础函数。我们先看下mymodel.save()的定义: def save(self, model_path, weights_only=False): mymodel对象的save()方法通过调用torch.save()实现了模型存储。需要注意的是参数weights_only,...
模型保存与加载是深度学习中常用的操作。主要分为两种方式:一种是直接保存模型,另一种是保存模型的参数,推荐以字典形式保存参数。具体操作代码如下:加载模型时,可以选择加载以模型形式保存的文件,或者加载以参数形式保存的文件并转换为模型。代码示例:加载模型后,若为自定义模型,必须先引入模型定义,...
Saving & Loading Model for Inference Save/Load state_dict (Recommended) Save: torch.save(model.state_dict(), PATH) Load: model = TheMode
torch.save(model.state_dict(), PATH) 加载 model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval() 当保存好模型用来推断的时候,只需要保存模型学习到的参数,使用torch.save()函数来保存模型state_dict,它会给模型恢复提供最大的灵活性,这就是为什么要推荐它来...
最简单的方法是使用 torch.save 保存状态字典。例如,我们可以将其保存到文件 'checkpoint.pth' 中。 torch.save(model.state_dict(), 'checkpoint.pth') 1. 然后,使用 torch.load 加载这个状态字典。 state_dict = torch.load('checkpoint.pth')print(state_...
save(checkpoint, path_checkpoint) # 加载 checkpoint = torch.load(path_checkpoint) net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] scheduler.last_epoch = start_epoch 跨设备保存加载模型 在CPU上...