power_to_db(features, ref=1.0, amin=1e-10, top_db=None) mean = np.mean(features, 0, keepdims=True) std = np.std(features, 0, keepdims=True) features = (features - mean) / (std + 1e-5) 梅尔频谱数据预处理方式 代码语言:javascript 复制 wav, sr_ret = librosa.load(audio_path, ...
sr=sample_rate)# 提取梅尔频谱图mel_spectrogram=librosa.feature.melspectrogram(audio,sr=sample_rate,n_fft=n_fft,hop_length=hop_length,n_mels=n_mels)# 转换为对数刻度log_mel_spectrogram=librosa.power_to_db(mel_spectrogram)# 保存梅尔频谱图np.save(save_path,log_mel_spectrogram)...
也就是对S取对数。与这个函数相反的是librosa.db_to_amplitude(S) 参数: S:输入幅度 ref:参考值,振幅abs(S)相对于ref进行缩放, 返回: dB为单位的S 11. 功率转dB librosa.core.power_to_db(S, ref=1.0) 1. 将功率谱(幅度平方)转换为分贝(dB)单位,与这个函数相反的是librosa.db_to_power(S) 参数: ...
threes = ones + twos# addition allowed because shapes are similarprint(threes)# tensors are added element-wiseprint(threes.shape)# this has the same dimensions as input tensorsr1 = torch.rand(2,3) r2 = torch.rand(3,2)# uncomment this line to get a runtime error# r3 = r1 + r2 t...
# 现在,x的梯度已经计算出来了,可以通过x.grad属性获取 print("Gradient of x with respect to the...
A replacement for NumPy to use the power of GPUs. A deep learning research platform that provides maximum flexibility and speed. Elaborating Further: A GPU-Ready Tensor Library If you use NumPy, then you have used Tensors (a.k.a. ndarray). PyTorch provides Tensors that can live either on...
Fix error while building pytorch from source due to not missing QNNPACK module (#131864) Make PyTorch buildable from source on PowerPC (#129736) Fix XPU extension building (#132847) Other: Fix warning when using pickle on a nn.Module that contains tensor attributes (#130246) Fix NaNs re...
>>generator = Generator_model(z_dim).to(device) 完成此过程后,我们已经准备好 DCGAN 生成器。 工作原理 在此秘籍中,我们进行了变换以将图像转换为张量并对其进行归一化,就像在第 3 章,“用于计算机视觉的卷积神经网络”中所做的一样。 然后,我们确定了机器上的设备:CPU 或 GPU。 然后,我们定义了从nn.Mod...
image = torchvision.transforms.functional.to_pil_image(tensor)# Equivalently way# PIL.Image -> torch.Tensorpath =r'./figure.jpg'tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() /255tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path...
A replacement for NumPy to use the power of GPUs and other accelerators. An automatic differentiation library that is useful to implement neural networks. 感觉回答写到这里有点太水了~那我们继续来写写 pytorch 是怎么实现这两点的。 首先是支持 gpu。gpu 是 nvidia 自家的硬件,需要用 cuda 来写 kernel...