transpose()只能一次操作两个维度;permute()可以一次操作多维数据,且必须传入所有维度数,因为permute()的参数是int*。 transpose()中的dim没有数的大小区分;permute()中的dim有数的大小区分 举例,注意后面的shape: #对于transpose,不区分dim大小x1 = x.transpose(0,1)'shape→[3,2]'x2= x.transpose(1,0)'...
2.2,transpose vs permute 维度交换 torch.transpose()只能交换两个维度,而.permute()可以自由交换任意位置。函数定义如下: transpose(dim0,dim1)→Tensor# See torch.transpose()permute(*dims)→Tensor# dim(int). Returns a view of the original tensor with its dimensions permuted. 在CNN模型中,我们经常遇到...
permute相当于可以同时操作于tensor的若干维度,transpose只能同时作用于tensor的两个维度; torch.transpose(x)合法, x.transpose()合法。torch.permute(x)不合法,x.permute()合法。 与contiguous、view函数之关联。contiguous:view只能作用在contiguous的variable上,如果在view之前调用了transpose、permute等,就需要调用contigu...
y = x.transpose(0, 1) 在上面的例子中,我们创建了一个形状为(2, 3)的二维张量x。然后,我们使用transpose函数将第0维和第1维交换,并将结果存储在变量y中。需要注意的是,transpose函数与permute函数不同,它只交换两个特定的维度,而permute函数可以重新排列所有维度。 view / reshapeview和reshape函数用于将张量...
PyTorch 两大转置函数 transpose() 和 permute(), 以及RuntimeError: invalid argument 2: view size is not compati 关心差别的可以直接看[3.不同点]和[4.连续性问题] 前言 在pytorch中转置用的函数就只有这两个 transpose() permute() 注意只有transpose()有后缀格式:transpose_():后缀函数的作用是简化如下...
PyTorch 中交换维度的操作有 transpose 和 permute 两种方式。交换维度的操作至少要求张量拥有两个以及两个以上的维度才有意义,因此在介绍交换维度的方式时不再考虑 0D 和 1D 张量。 transpose torch.transpose(input, dim0, dim1)函数将输入张量 input 的第 dim0 个维度和第 dim1 个维度进行交换,并将交换维度...
在Pytorch中,处理张量转置时,两个主要函数是transpose()和permute()。本篇文章将深入探讨这两个函数,并揭示它们之间的区别。transpose()函数的用途是返回输入张量的转置形式。它会交换指定维度的位置。重要的是,只能有两个参数代表要交换的维度位置。参数部分,需要注意的是,transpose()函数仅支持交换两...
交换维度 permute 与 transpose函数每次只能交换两个维度不同,permute 可以直接设置新的维度排列方式: >>> x = torch.tensor([[[1,2,3], [4,5,6]]])>>> print(x, x.shape)tensor([[[1,2,3],[4,5,6]]]) torch.Size([1,2,3])>>> x = x.pe...
transpose()函数(torch.transpose(input, dim0, dim1, out=None) → Tensor)的目的是返回输入矩阵input的转置,其特点在于交换指定的两个维度(dim0和dim1),默认交换第一维和第二维。permute()函数(permute(dims) → Tensor)的功能是将tensor的维度进行重新排列,其核心在于接受一个表示新维度顺序...
4BatchTranspose优化 BatchTranspose操作即矩阵转置,仅交换矩阵最后的两维,以下情况均符合BatchTranspose的定义,其中括号内容表示维度的顺序: (0,1) -> (1,0) (0,1,2) -> (0,2,1) 在朴素的Permute方案中,对于最后一维作为整体移动的情况下,已经进行充分的优化。但实际场景中还存在矩阵转置的情况,此时无法应用...