图二中的new_zeros函数: Returns a Tensor of sizesizefilled with0. By default, the returned Tensor has the sametorch.dtypeandtorch.deviceas this tensor. 也就是说new_zeros创建的tensor的数据类型和device类型与weight是一样的,这样不需要再指定数据类型及device类型,更方便。 图一中的zeros函数:Returns a...
其中,第一个方法是new_tensor方法,具体用法和torch.tensor方法类似。我们可以看到,在这里新的张量类型不再是torch.int64,而是和前面创建的张量的类型一样,即torch.float32。和前面一样,可以用new_zeros方法生成和原始张量类型相同且元素全为0的张量,用new_ones方法生成和原始张量类型相同且元素全为1的张量。另外需要...
new_zeros()pytorch版本的转换方式 new_zeros()pytorch版本的转换⽅式 如下所⽰:logprobs.new_zeros(logprobs.size())pytorch 0.4版本中⽤到的 新建⼀个与logprobs类型相同的Variable 转换为pytorch0.2等版本 logprobs.new(logprobs.size()).zero_()以上这篇new_zeros() pytorch版本的转换⽅式...
new_zeros() pytorch版本的转换方式 如下所示: logprobs.new_zeros(logprobs.size()) pytorch 0.4版本中用到的 新建一个与logprobs类型相同的Variable 转换为pytorch0.2等版本 logprobs.new(logprobs.size()).zero_() 以上这篇new_zeros() pytorch版本的转换方式就是小编分享给大家的全部内容了,希望能给大...
zeros(1) if rank == 0: tensor += 1 # Send the tensor to process 1 dist.send(tensor=tensor, dst=1) else: # Receive tensor from process 0 dist.recv(tensor=tensor, src=0) print('Rank ', rank, ' has data ', tensor[0]) 在上面的例子中,两个进程都以零张量开始,然后进程 0 递增...
# Compute thenewhiddenstate and output.new_h=F.tanh(new_cell)*output_gatereturnnew_h,new_cell 定义好了我们这样使用: 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 importtorchX=torch.randn(batch_size,input_features)h=torch.randn(batch_size,state_size)C=torch.randn(batch_size,...
zeros_tensor = torch.zeros(size) print(zeros_tensor) torch.ones(size): 创建元素全为1的张量 创建一个指定大小的张量,其中所有元素的值都为1。 import torch size = (2, 3) ones_tensor = torch.ones(size) print(ones_tensor) torch.empty(size): 创建未初始化的张量 ...
self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) ...
'new', 'new_empty', 'new_full', 'new_ones', 'new_tensor', 'new_zeros', 'nonzero', 'norm', 'normal_', 'numel', 'numpy', 'orgqr', 'ormqr', 'output_nr', 'permute', 'pin_memory', 'pinverse', 'polygamma', 'polygamma_', 'potrf', 'potri', 'potrs', 'pow', 'pow_'...
其中,第一个方法是new_tensor方法,具体用法和torch.tensor方法类似。我们可以看到,在这里新的张量类型不再是torch.int64,而是和前面创建的张量的类型一样,即torch.float32。和前面一样,可以用new_zeros方法生成和原始张量类型相同且元素全为0的张量,用new_ones方法生成和原始张量类型相同且元素全为1的张量。另外需要...