new_zeros()pytorch版本的转换方式 new_zeros()pytorch版本的转换⽅式 如下所⽰:logprobs.new_zeros(logprobs.size())pytorch 0.4版本中⽤到的 新建⼀个与logprobs类型相同的Variable 转换为pytorch0.2等版本 logprobs.new(logprobs.size()).zero_()以上这篇new_zeros() pytorch版本的转换⽅式...
图二中的new_zeros函数: Returns a Tensor of sizesizefilled with0. By default, the returned Tensor has the sametorch.dtypeandtorch.deviceas this tensor. 也就是说new_zeros创建的tensor的数据类型和device类型与weight是一样的,这样不需要再指定数据类型及device类型,更方便。 图一中的zeros函数:Returns a...
print(tensor_data) torch.zeros(size): 创建元素全为0的张量 创建一个指定大小的张量,其中所有元素的值都为0。 import torch size = (2, 3) zeros_tensor = torch.zeros(size) print(zeros_tensor) torch.ones(size): 创建元素全为1的张量 创建一个指定大小的张量,其中所有元素的值都为1。 import torch...
其中,第一个方法是new_tensor方法,具体用法和torch.tensor方法类似。我们可以看到,在这里新的张量类型不再是torch.int64,而是和前面创建的张量的类型一样,即torch.float32。和前面一样,可以用new_zeros方法生成和原始张量类型相同且元素全为0的张量,用new_ones方法生成和原始张量类型相同且元素全为1的张量。另外需要...
# pytorch的标记默认从0开始tensor = torch.tensor([0, 2, 1, 3])N = tensor.size(0)num_classes = 4one_hot = torch.zeros(N, num_classes).long()one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long()) ...
# Compute thenewhiddenstate and output.new_h=F.tanh(new_cell)*output_gatereturnnew_h,new_cell 定义好了我们这样使用: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importtorchX=torch.randn(batch_size,input_features)h=torch.randn(batch_size,state_size)C=torch.randn(batch_size,state_size...
global temp_buffertemp_buffer = h_new.detach().clone() if not self.h.requires_grad else h_new.clone() return self.y else:# h [batch_size, seq_len, d_model, state_size]h = torch.zeros(x.size(0), self.seq_len, self.d_model...
z=torch.zeros(5,5,dtype=torch.int)print(z)# 直接通过数据创建张量 l=torch.tensor([1.1,2.2])print(l)# 通过已有的一个张量创建相同尺寸的新张量 x=x.new_ones(5,5,dtype=torch.double)print(x)# 利用randn_like方法得到相同尺寸的张量,并且采用随机初始化的方法为其赋值 ...
class LSTMLM(torch.nn.Module): def __init__(self, vocab_size, dim=17): super().__init__() self.cell = LSTMCell(dim, dim) self.embeddings = torch.nn.Parameter(torch.rand(vocab_size, dim)) self.c_0 = torch.nn.Parameter(torch.zeros(dim)) @property def hc_0(self): return (...
The example given in the docs for new_zeros() is actually an example for new_ones(). Should be a trivial fix. (Sorry, not quite sure what the etiquette/process is for fixing small errors like these). Thanks. pytorch/torch/_tensor_docs.py...