model=AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16,trust_remote_code=True,device_map='auto',# pytorch 自适应拆分模型并分配给各个 GPU) 然后执行代码时不用分成N个进程了,设置成一个,一个进程调用N个GPU即可: torchrun --standalone --nnodes=1--nproc_per_node1inferen...
3、设置当前阶段为inference(# predict) model.eval()
'model_fp32.layer1.0.bn2'],['model_fp32.layer1.1.conv1','model_fp32.layer1.1.bn1','...
9、Util:AccuracyCalculator:给定一个 query 和推理嵌入向量(reference embedding),计算数个准确度指标Inference model:utils.inference 包含用于在 batch 或一组 pair 中,找到匹配对(matching pairs )的类Logging Preset:提供日志数据 hook,模型训练、验证和存储期间的提前停止日志。损失函数可以自定义使用 Distan...
To host an inference endpoint and make predictions using Amazon SageMaker SDK, complete the following steps: Create a model. The model function expects the name of the TorchServe container image and the location of your trained models. See the following code: ...
Input: Classification models: torch.Tensor; NLP models: Masked sentence; OD model: .jpg image Application Metric: Average Inference latency for 100 iterations calculated after 15 warmup iterations Platform: Tiger Lake Number of Nodes: 1 Numa Node ...
在神经网络模型的推断(inference)阶段中,我们不需要进行反向传播,也不需要计算梯度,使用 with torch.no_grad(): 上下文管理器可以有效地减少内存消耗和计算时间 def predict(model, data): model.eval() with torch.no_grad(): output = model(data) pred = output.data.max(1, keepdim=True...
@torch.inference_mode()def p_sample(self, x: torch.Tensor, timestamp: int) -> torch.Tensor:b, *_, device = *x.shape, x.devicebatched_timestamps = torch.full((b,), timestamp, device=device, dtype=torch.long) preds = self.model(x, batch...
def inference(checkpoint_path: str=None,num_time_steps: int=1000,ema_decay: float=0.9999, ):checkpoint = torch.load(checkpoint_path)model = UNET().cuda()model.load_state_dict(checkpoint['weights'])ema = ModelEmaV3(model, decay...
device = device model = build_model(cfg.model) ckpt = torch.load(model_path, map_location=lambda storage, loc: storage) load_model_weight(model, ckpt, logger) self.model = model.to(device).eval() self.pipeline = Pipeline(cfg.data.val.pipeline, cfg.data.val.keep_ratio) def inference(...