model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH, map_location=device)) AI代码助手复制代码 解释: 在使用GPU训练的CPU上加载模型时,请传递torch.device('cpu')给map_location函数中的torch.load()参数,使用map_location参数将张量下面的存储器动态地重新映射到CPU设备 。 2、...
2. cpu -> gpu 1 torch.load('modelparameters.pth', map_location=lambdastorage, loc: storage.cuda(1)) 3. gpu 1 -> gpu 0 torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'}) 4. gpu -> cpu torch.load('modelparameters.pth', map_location=lambdastorage, loc: storage...
Pytorch在保存模型时,会把训练过程中使用的设备号(GPU:0, CPU等)也一起保存下来,当load保存的模型时,会默认把权重加载到训练时使用的设备上,要修改加载到的卡号可以如下: torch.load('your_model.pth', map_location=lambda storage, loc : storage.cuda(1))...
2. cpu -> gpu 1 torch.load('modelparameters.pth', map_location=lambda storage, loc: storage.cuda(1)) 1. gpu 1 -> gpu 0 torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'}) 1. gpu -> cpu torch.load('modelparameters.pth', map_location=lambda storage, loc: sto...
2019-10-20 15:04 − #[深度学习] Pytorch(三)——多/单GPU、CPU,训练保存、加载预测模型问题 ###上一篇实践学习中,遇到了在多/单个GPU、GPU与CPU的不同环境下训练保存、加载使用使用模型的问题,如果保存、加载的上述三类环境不同,加载时会出错。就去研究了一下,做了实验,得出以下结论: **多... 长颈...
torch.load 主要参数 :f:文件路径 、map_location:指定存放位置、 cpu or gpu 模型的保存的两种方法: 1、保存整个Module torch.save(net,path) 2、保存模型参数 state_dict = net.state_dict()torch.save(state_dict , path) 二、模型的训练过程中保存 ...
load(pretrained, map_location="cpu") model.load_state_dict(state_dict) return model def qint8edsr(block=QuantizableResBlock, pretrained=None, quantize=False): model = QuantizableEDSR(block=block) _replace_relu(model) if quantize: backend = 'fbgemm' quantize_model(model, backend) else: ...
load('tensors.pt', map_location=lambda storage, loc: storage) torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1)) torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'}) with open('tensor.pt', 'rb') as f: buffer = io.BytesIO(f.read()) torch...
2、由于后面使用DDP包裹模型进行训练,其内部会自动将所有rank的模型权重同步为rank 0的权重,因此我们只需在rank 0上读取模型权重即可。这是基于Pytorch版本1.12.1,低级版本似乎没有这个特性,需要在不同rank分别导入权重,则load需要传入map_location,如下面注释的两行代码所示。
checkpoint = torch.load(PATH,map_location='cpu') 1. 查看模型中某些层的参数 假设模型的网络结构如下: # 定义一个网络 from collections import OrderedDict model = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1,20,5)), ('relu1', nn.ReLU()), ...