test 在训练过程中是不调用的,也就是说是不相关,在训练过程中只进行training和validation。 这里假设已经训练完成,进行测试 # 获取恢复了权重和超参数等的模型 model=MODEL.load_from_checkpoint(checkpoint_path='my_model_path/hei.ckpt')# 修改测试时需要的参数,例如预测的步数等 model.pred_step=1000# 定义tra...
安装PyTorch Lightning: pipinstall pytorch-lightning 创建LightningModule 类: LightningModule 类是 PyTorch Lightning 的核心概念,它用于定义模型的结构、损失函数和优化器等。您可以继承 LightningModule 类,并实现其中的一些方法,如 forward()、training_step()、validation_step() 和 configure_optimizers() 等。
3-layer network (illustration by: William Falcon)要将模型转换为PyTorch Lightning,只需将pl.LightningModule替换掉nn.Module Lightning 提供了结构化的 PyTorch code 看!两者的代码完全相同! 这意味着可以像使用PyTorch模块一样完全使用LightningModule,例如预测 或者用于预训练 2.2 数据 data 在本教程中,使用MNIST。
# validation_step # ... # validation_step # *_step_end # ... # *_step_end 4. 使用Lightning的好处 只需要专注于研究代码 不需要写一大堆的.cuda()和.to(device),Lightning会帮你自动处理。如果要新建一个tensor,可以使用type_as来使得新tensor处于相同的处理器上。 def training_step(self, batch,...
同理,在model_interface中建立class MInterface(pl.LightningModule):类,作为模型的中间接口。__init__()函数中import相应模型类,然后老老实实加入configure_optimizers, training_step, validation_step等函数,用一个接口类控制所有模型。不同部分使用输入参数控制。
LightningModule将PyTorch代码整理成5个部分: Computations (init). Train loop (training_step) Validation loop (validation_step) Test loop (test_step) Optimizers (configure_optimizers) 例子: import pytorch_lightning as pl class LitModel(pl.LightningModule): ...
同理,在model_interface中建立class MInterface(pl.LightningModule):类,作为模型的中间接口。__init__()函数中import相应模型类,然后老老实实加入configure_optimizers, training_step, validation_step等函数,用一个接口类控制所有模型。不同部分使用输入参数控制。
loss(last_hidden, y[step]) # 小示例 loss = loss / max_seq_len return {'loss': loss} 或像CNN图像分类一样 # 在这里定义验证代码 def validation_step(self, batch, batch_idx): x, y = batch # 或者像CNN分类一样 out = self(x) loss = my_loss(out, y) return {'loss': loss} ...
Validation Loop(validation_step) 在一个epoch训练完以后执行Valid Test Loop(test_step) 在整个训练完成以后执行Test Optimizer(configure_optimizers) 配置优化器等 展示一个最简代码: >>> import pytorch_lightning as pl >>> class LitModel(pl.LightningModule): ... ... def __init__(self): ... sup...
如下所示,就是一个简化的pytorch lightning逻辑部分,我们需要定义一个类CIFARModule,然后继承自pl.LightningModul。 这里包含三部分,模型相关的部分__init__和forword;优化器相关的部分configure_optimizers;模型训练逻辑部分training_step,validation_step和test_step。 - 模型相关部分:这部分一般涉及到一些超参数的设定,...