classMyLightningCLI(LightningCLI):defadd_arguments_to_parser(self,parser):parser.add_optimizer_args(torch.optim.Adam)parser.add_lr_scheduler_args(torch.optim.lr_scheduler.ExponentialLR)# config.yaml 直接指定,移除了modeloptimizer:lr:0.01lr_scheduler:gamma:0.2model:...trainer:... 上面的写法是指定了...
not engineering. PyTorch Lightning is just organized PyTorch, but allows you to train your models on CPU, GPUs or multiple nodes without changing your code. Lightning makes state-of-the-art training features trivial to use with a switch of a flag, such as 16-bit precision, model sharding, ...
在PyTorch-Lightning中,启用16位精度不需要修改模型的任何内容,也不需要执行上述代码。只需在创建Trainer时设置precision=16即可。 复制 trainer=Trainer(amp_level='O2',use_amp=False)trainer.fit(model) 1. 2. 通过这样的设置,PyTorch-Lightning将自动启用16位精度,并根据需要进行梯度缩放和其他必要的操作。 移动...
例如预测的步数等 model.pred_step=1000# 定义trainer,其中limit_test_batches表示取测试集中的0.05的数据来做测试 trainer=pl.Trainer(gpus=1,precision=16,limit_test_batches=0.05)#测试,自动调用test_step(),其中dm为数据集,放在下面讲 trainer.test(model=dck...
下面重点介绍pytorch_lightning 模型训练加速的一些技巧。 1,使用多进程读取数据(num_workers=4) 2,使用锁业内存(pin_memory=True) 3,使用加速器(gpus=4,strategy="ddp_find_unused_parameters_false") 4,使用梯度累加(accumulate_grad_batches=6) 5,使用半精度(precision=16,batch_size=2*batch_size) 6,自动...
下面重点介绍pytorch_lightning 模型训练加速的一些技巧。 1,使用多进程读取数据(num_workers=4) 2,使用锁业内存(pin_memory=True) 3,使用加速器(gpus=4,strategy="ddp_find_unused_parameters_false") 4,使用梯度累加(accumulate_grad_batches=6) 5,使用半精度(precision=16,batch_size=2*batch_size) 6...
pytorch-lightning 有以下一些引人注目的功能: 可以不必编写自定义循环,只要指定loss计算方法即可。 可以通过callbacks非常方便地添加CheckPoint参数保存、early_stopping 等功能。 可以非常方便地在单CPU、多CPU、单GPU、多GPU乃至多TPU上训练模型。 可以通过调用torchmetrics库,非常方便地添加Accuracy,AUC,Precision等各种常...
最后,第三部分提供了一个我总结出来的易用于大型项目、容易迁移、易于复用的模板,有兴趣的可以去GitHub— https://github.com/miracleyoo/pytorch-lightning-template 试用。 02 核心 Pytorch-Lighting 的一大特点是把模型和系统分开来看。模型是像Resnet18, RNN之类的纯模型, ...
precision=16, limit_train_batches=0.5, val_check_interval=0.25 ) 1. 2. 3. 4. 5. 6. 7. 8. Checkpoints Lightning会自动保存你的模型,一旦你训练好了,你可以通过下面代码来加载检查点 model = LitModel.load_from_checkpoint(path) 1.
Pytorch-Lightning 是一个很好的库,或者说是pytorch的抽象和包装。它的好处是可复用性强,易维护,逻辑清晰等。缺点也很明显,这个包需要学习和理解的内容还是挺多的,或者换句话说,很重。如果直接按照官方的模板写代码,小型project还好,如果是大型项目,有复数个需要调试验证的模型和数据集,那就不太好办,甚至更加麻烦了...