deftraining_step(self,batch,batch_idx):x,y=batchy_hat=self.model(x)loss=F.cross_entropy(y_hat,y)pred=...return{"loss":loss,"pred":pred}deftraining_step_end(self,batch_parts):# 从每个GUP计算到的predictionspredictions=batch_parts["pred"]# 从每个GUP计算到的losseslosses=batch_parts["loss...
主页:https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html 三个核心组件: 模型 优化器 Train/Val/Test步骤 数据流伪代码: outs = [] forbatchindata: out = training_step(batch) outs.append(out) training_epoch_end(outs) 等价Lightning...
def on_train_end(self, trainer, pl_module): print('do something when training ends') 并将回调传递给Trainer trainer = Trainer(callbacks=[MyPrintingCallback()]) 提示,请参阅12个以上的回调方法:https://pytorch-lightning.readthedocs.io/en/latest/extensions/callbacks.html。 子模块 研究项目倾向于测试...
完全版模板可以在GitHub:https:///miracleyoo/pytorch-lightning-template 找到。 Lightning Module 简介 主页:https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html 三个核心组件: 模型 优化器 Train/Val/Test步骤 数据流伪代码: outs = [] for batch i...
Train/Val/Test步骤 数据流伪代码: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 outs=[]forbatchindata:out=training_step(batch)outs.append(out)training_epoch_end(outs)等价Lightning代码:deftraining_step(self,batch,batch_idx):prediction=...returnprediction ...
下面重点介绍pytorch_lightning 模型训练加速的一些技巧。 1,使用多进程读取数据(num_workers=4) 2,使用锁业内存(pin_memory=True) 3,使用加速器(gpus=4,strategy="ddp_find_unused_parameters_false") 4,使用梯度累加(accumulate_grad_batches=6) 5,使用半精度(precision=16,batch_size=2*batch_size) 6,自动...
下面重点介绍pytorch_lightning 模型训练加速的一些技巧。 1,使用多进程读取数据(num_workers=4) 2,使用锁业内存(pin_memory=True) 3,使用加速器(gpus=4,strategy="ddp_find_unused_parameters_false") 4,使用梯度累加(accumulate_grad_batches=6) 5,使用半精度(precision=16,batch_size=2*batch_size) 6,自动...
PyTorch Lightning 是一种重构 PyTorch 代码的工具,它可以抽出代码中复杂重复的部分,使得 AI 研究可扩展并且可以快速迭代。然而近日一位名为 Florian Ernst 的博主却发现 PyTorch Lightning 存在一个 bug——让原本应该加速的训练变得更慢了。 本文作者 Florian Ernst ...
model.train: 作用:将模型设置为训练模式。 行为变化:启用Dropout和Batch Normalization的动态调整。 Dropout:在每次前向传播中随机选择部分连接进行训练,有助于防止过拟合。 BN:利用每一批数据的实时统计信息,有助于模型在训练过程中更好地适应数据分布的变化。model.eval: 作用:将模型设置为...