总体而言,Lightning保证了自动化零件经过严格测试,改正,是现代的最佳实践。 它有多灵活? 如您所见,您只是在组织PyTorch代码-没有抽象。对于Trainer所提取的内容,您可以覆盖任何您想做的事情,例如实现自己的分布式训练,16位精度甚至是自定义的反向传递梯度。例如,在这里您可以自己进行向后传递梯度 class LitModel(...
若使用 PyTorch Lightning,可以把这一切封装到一个 class 内: importpytorch_lightningasLclassLightningModel(L.LightningModule):def__init__(self):super().__init__() self.model = ResNet18()defforward(self, x):returnmodel(x)defconfigure_optimizers(self): optimizer = torch.optim.Adam(self.model.p...
model=MyLightningModule.load_from_checkpoint("/path/to/checkpoint.ckpt")# disable randomness, dropout, etc...model.eval()# 基于训练好的权重得到预测值y_hat=model(x) LightningModule 允许通过调用 self.save_hyperparameters()自动保存传递给 init 的所有超参数: classMyLightningModule(LightningModule):def...
lightning_fabric.utilities.exceptions.MisconfigurationException: You called `self.log(val_reg_loss_refine, ...)` twice in `validation_step` with different arguments. This is not allowed 临时解决方案:进入到conda环境的对应文件夹中,修改result.py envs/xxxx/lib/python3.8/site-packages/pytorch_lightning...
model=CustomMNIST()trainer=Trainer(max_epochs=5,gpus=1) 如果你在上面的gist代码中看到第27和33行,你会看到training_step和configure_optimators方法,它覆盖了在第2行中扩展的类LightningModule中的方法。这使得pytorch中标准的nn.Module不同于LightningModule,它有一些方法使它与第39行中的Trainer类兼容。
not engineering. PyTorch Lightning is just organized PyTorch, but allows you to train your models on CPU, GPUs or multiple nodes without changing your code. Lightning makes state-of-the-art training features trivial to use with a switch of a flag, such as 16-bit precision, model sharding, ...
步骤2:加载训练好的PyTorch Lightning模型 接下来,我们加载训练好的PyTorch Lightning模型。以下代码展示了如何加载模型: # 创建一个PyTorch Lightning模型实例lightning_model=MyLightningModel.load_from_checkpoint('path/to/lightning_model.ckpt')# 切换到Evaluation模式lightning_model.eval() ...
如何使用PyTorch Lightning的ModelCheckpoint不替换老模型 介绍 在深度学习模型训练过程中,使用checkpoint可以帮助我们保存模型的参数和状态,以便在训练过程中出现错误或中断时能够恢复训练。PyTorch Lightning是一个强大的深度学习框架,提供了ModelCheckpoint回调,用于在训练过程中自动保存模型的最佳参数。然而,默认情况下,ModelCh...
在DInterface和MInterface分别是data_interface.py和model_interface.py中创建的类,他们两个分别就是 class DInterface(pl.LightningDataModule): 用于所有数据集的接口,在setup()方法中初始化你准备好的xxxdataset1.py,xxxdataset2.py中定义的torch.utils.data.Dataset类。在train_dataloader,val_dataloader,test_datal...
Pytorch-Lightning使用 PL的主要过程 # 从模型的定义开始,主要区别就是继承pl.LightningModuleclassLitAutoEncoder(pl.LightningModule):# 定义网络架构 def__init__(self):super(LitAutoEncoder).__init__()self.encoder=nn.Sequential(nn.Linear(28*28,64),nn.ReLU(),nn.Linear(64,3))# 前向传播过程 def...