classLitAutoEncoder(pl.LightningModule):# 将模型定义代码写在__init__中def__init__(self,encoder,decoder):super().__init__()# 前向传播在里面两个类实例方法中self.encoder=encoderself.decoder=decoder# 训练代码写在 training_step 钩子deftrai
Lightning forces the following structure to your code which makes it reusable and shareable: Research code (the LightningModule). Engineering code (you delete, and is handled by the Trainer). Non-essential research code (logging, etc... this goes in Callbacks). ...
通过LightningModule定义基本的模型。在使用原始的PyTroch框架时,model的定义和训练是分开的,一般需要自定义构建Trainer函数以便调用train、valid、test功能。这一点在pytorch-lightning框架中进行了改善。在此框架下,model的定义和trian、valid、test全部集成到了一起,通过定义*_step完成模型的train、valid、test过程。 impor...
html) Lightning是一种组织PyTorch代码,以使科学代码(science code)与工程分离的方法。它不仅仅是框架,而是PyTorch样式指南。在Lightning中,您可以将代码分为3个不同的类别: 研究代码(位于LightningModule中)。 工程代码(您删除并由trainer进行处理)。 不必要的研究代码(日志等,这些可以放在回调中)。 这是一个如何...
如果你看到ExtendMNIST类中的代码,你会看到它只是覆盖了LightningModule类。使用这种编写代码的方法,你可以扩展以前编写的任何其他模型,而无需更改它,并且仍然可以使用pytorch lightning库。 那么,你能在训练时给我看一下结果吗?好,让我们看看它在训练时是什么样子。
import pytorch_lightning as pl class LitModel(pl.LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(28 * 28, 10) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) ...
若使用 PyTorch Lightning,可以把这一切封装到一个 class 内: importpytorch_lightningasLclassLightningModel(L.LightningModule):def__init__(self):super().__init__() self.model = ResNet18()defforward(self, x):returnmodel(x)defconfigure_optimizers(self): ...
针对不同的代码,Lightning有不同的处理方式。 这里的研究代码指的是特定系统及其训练方式,比如GAN、VAE,这类的代码将由LightningModule直接抽象出来。 我们以MNIST生成为例。 l1 = nn.Linear(...) l2 = nn.Linear(...) decoder = Decoder() x1 = l1(x) ...
上面已经提到,研究代码 在 Lightning 中,是抽象为 LightningModule 类;而这个类与我们平时使用的 torch.nn.Module 是一样的(在原有代码中直接替换 Module 而不改其他代码也是可以的),但不同的是,Lightning 围绕 torch.nn.Module 做了很多功能性的补充,把上面4个关键部分都囊括了进来。
理解PyTorch Lightning的基本概念:在开始移植代码之前,您需要了解PyTorch Lightning的核心概念,如LightningModule、Trainer等。 重构PyTorch代码:您需要将原始的PyTorch代码分解为可重用的组件,并尝试将这些组件映射到PyTorch Lightning的高级抽象。 使用PyTorch Lightning的高级功能:一旦您的代码在PyTorch Lightning中重新编写,您...