# extend StandardMNIST and LightningModule at the same time #thisis whatIlike from python,extend twoclassatthe same timeclassExtendMNIST(StandardMNIST,LightningModule):def__init__(self):super().__init__()deftraining_step(self,batch,batch_idx):data,target=batch logits=self.forward(data)loss=F...
等价Lightning代码: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 deftraining_step(self,batch,batch_idx):prediction=...returnprediction deftraining_epoch_end(self,training_step_outputs):forpredictioninpredictions:#dosomethingwiththese 我们需要做的,就是像填空一样,填这些函数。 组件与函数 API页面[3...
deftraining_step(self,batch,batch_idx):x,y=batchy_hat=self.model(x)loss=F.cross_entropy(y_hat,y)pred=...return{"loss":loss,"pred":pred}deftraining_step_end(self,batch_parts):# 从每个GUP计算到的predictionspredictions=batch_parts["pred"]# 从每个GUP计算到的losseslosses=batch_parts["loss...
之后在training_step,validation_step,test_step定义每个batch的训练逻辑,其中的self.log定义了tensorboard中记录日志的内容,具体的使用方式可以参考官网的教程:https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#log,常用的应该就是name,value,on_step,on_epoch这些参数 class ResNet50(n...
同样,PyTorch中的代码与Lightning中的代码相同。 数据集被添加到数据加载器Dataloader中,该数据加载器处理数据集的加载,shuffling,batching。 简而言之,数据准备包括四个步骤: 下载图片 图像变换(这些是高度主观的)。 生成训练,验证和测试数据集拆分。 将每个数据集拆分包装在DataLoader中 ...
上述代码中:batch 即为从 train_dataloader 采样的一个batch的数据,batch_idx即为目前batch的索引。 pl.Trainer的主要参数 1、默认为每1个校验一次,即自动调用函数,可以进行设置 trainer=pl.Trainer(check_val_every_n_epoch=1) 2、设置GPU trainer=pl.Trainer(gpu=0) ...
LightningModule):def__init__(self,learning_rate=0.001):super(MyModel,self).__init__()# 定义网络结构self.layer=nn.Linear(28*28,10)# 例如:简单的全连接层self.learning_rate=learning_ratedefforward(self,x):returnself.layer(x)deftraining_step(self,batch,batch_idx):# 定义训练步骤x,y=batch...
def training_step(self, batch, batch_idx): x, y = batch #把z放在和x一样的处理器上 z = sample_noise() z = z.type_as(x) 在这里,有个地方需要注意的是,不是所有的在LightningModule 的 tensor 都会被自动处理,而是只有从 Dataloader 里获取的 tensor 才会被自动处理,所以对于 transductive learning...
理论已经足够,现在我们将使用PyTorch Lightning实现LetNet CNN。由于其简单性和小型尺寸,选择了LeNet作为示例。 模型实现 在PyTorch中,新模块继承自pytorch.nn.Module。在PyTorch Lighthing中,模型类继承自ligthning.pytorch.LightningModule。 你可以像使用 nn.Module 类一样使用 ligthning.pytorch.LightningModule,只是它...
等价Lightning代码:def training_step(self, batch, batch_idx):prediction = ...return prediction def training_epoch_end(self, training_step_outputs):for prediction in predictions:# do something with these 我们需要做的,就是像填空一样,填这些函数。