可以看到,使用默认的K-Means算法将使用随机的初始值,因此每次执行的结果都不一样。 上面的输出中将0,1用户聚类到一起,效果并不理想。然而,如果我们可以确定用户0与用户5是有很大区别的,就可以指定用户0和用户5作为K-Means聚类算法的初始值。可以看到和我们的预期完全一致,这样效果就非常好了。 由于K-Means毕竟是...
日新月异 PyTorch - pytorch 基础: K-means 聚类算法(自定义实现,对一个 x,y 数据做分类) 示例如下: basic\demo06.py ''' K-means 聚类算法(自定义实现,对一个 x,y 数据做分类) 本例中可以把 x,y 数据理解为二维坐标上的一个点 K-means 聚类算法是一种把数据分成 k 个组的聚类算法 它先随机选...
本系统使用了三种推荐算法:基于用户的协同过滤算法、基于物品的协同过滤算法、基于机器学习k-means聚类的过滤算法,以及三种算法的混合推荐算法。
Kmeans是一种简单易用的聚类算法,是少有的会出现在深度学习项目中的传统算法,比如人脸搜索项目、物体检测项目(yolov3中用到了Kmeans进行anchors聚类)等。 一般使用Kmeans会直接调sklearn,如果任务比较复杂,可以通过numpy进行自定义,这里介绍使用Pytorch实现的方式,经测试,通过Pytorch调用GPU之后,能够提高多特征聚类的速度。
pytorch 余弦相似矩阵 余弦相似性kmeans,0.聚类聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法。1.内在相似性的度量聚类是根据数据的内在的相似性进行的,那
torch:用于实现K-Means算法的核心功能。 numpy:用于高效的数据处理。 matplotlib.pyplot:用于绘制聚类结果。 sklearn.datasets.make_blobs:生成模拟数据集用于测试算法。 至此,我们已经完成了PyTorch的安装配置以及必要库的导入工作,接下来就可以着手实现K-Means聚类算法了。
Kmeans是一种简单易用的聚类算法,是少有的会出现在深度学习项目中的传统算法,比如人脸搜索项目、物体检测项目(yolov3中用到了Kmeans进行anchors聚类)等。 一般使用Kmeans会直接调sklearn,如果任务比较复杂,可以通过numpy进行自定义,这里介绍使用Pytorch实现的方式,经测试,通过Pytorch调用GPU之后,能够提高多特征聚类的速度...
labels = kmeans.predict(data) 最后,我们可以使用silhouette_score函数来计算轮廓系数。该函数的参数是数据和聚类结果的标签。 python score = silhouette_score(data, labels) 轮廓系数的取值范围在[-1, 1]之间,值越接近1表示聚类结果越好,值越接近-1表示聚类结果越差。 除了轮廓系数,我们还可以使用其他指标来评...
Kmeans是一种简单易用的聚类算法,是少有的会出现在深度学习项目中的传统算法,比如人脸搜索项目、物体检测项目(yolov3中用到了Kmeans进行anchors聚类)等。 一般使用Kmeans会直接调sklearn,如果任务比较复杂,可以通过numpy进行自定义,这里介绍使用Pytorch实现的方式,经测试,通过Pytorch调用GPU之后,能够提高多特征聚类的速度...
kmean算法很简单 随机选择k个样本点作为初始中心点。 计算样本到所有k个中心点的距离,距离最近的标记成对应的类别。 计算新的中心点,返回步骤二,直到所有样本点标记不再变化。 具体实现如下。 defkmeans(data,k,max_time=100):n,m=data.shapeini=torch.randint(n,(k,))#只有一维需要逗号midpoint=data[ini]...