In-place 操作是指在原始对象上直接进行修改,而不是创建新的对象。在 PyTorch 中,In-place 操作能够节省内存并提高计算效率,因为它避免了在内存中复制数据。这种操作通常在函数名后添加一个下划线 _ 来表示,例如 add_() 和relu_()。 2. PyTorch 中的 In-place 操作示例 下面是一个简单的 In-place 操作示例...
在PyTorch中,不是所有的操作都可以进行in-place操作。例如,一些函数(如torch.add、torch.sub等)可以进行in-place操作,而另一些函数(如torch.Tensor.abs、torch.Tensor.sin等)则不可以。在进行in-place操作时,我们必须确保我们正在使用的操作支持in-place操作。 内存不足当进行in-place操作时,我们需要足够的内存来存...
pytorch中原地操作的后缀为_,如.add_()或.scatter_(),就地操作是直接更改给定Tensor的内容而不进行复制的操作,即不会为变量分配新的内存。Python操作类似+=或*=也是就地操作。 为什么in-place操作可以在处理高维数据时可以帮助减少内存使用呢,下面使用一个例子进行说明,定义以下简单函数来测量PyTorch的异位ReLU(out-o...
in-place操作的主要缺点是,它们可能会覆盖计算梯度所需的值,这意味着破坏模型的训练过程。这是PyTorch autograd官方文档所说的: 在autograd支持in-place操作是一件困难的事情,我们在大多数情况下不鼓励使用它们。Autograd的主动缓冲区释放和重用使其...
In-place操作用在推理的时候可以显著节省内存,但是训练的时候一定要小心使用。 如今的高级深度神经网络拥有数百万个可训练参数,训练它们通常会导致GPU内存耗尽。有几种简单的方法可以减少模型占用的GPU内存,例如: 考虑改变模型的架构或使用具有较少可训练参数的模型类型(例如,选择DenseNet-121而不是DenseNet-169)。这种方...
2. 报错解析:in-place(置位)操作相关理解&说明 上面的错误提示“one of the variables needed for gradient computation has been modified byan inplace operation”,直译就是过来“梯度计算需要的一个变量被一个置位操作更改了” 之前这个问题一直困扰我的原因就是对置位操作的理解不到位,原来我理解置位操作只有...
In-place操作用在推理的时候可以显著节省内存,但是训练的时候一定要小心使用。 如今的高级深度神经网络拥有数百万个可训练参数,训练它们通常会导致GPU内存耗尽。有几种简单的方法可以减少模型占用的GPU内存,例如: 考虑改变模型的架构或使用具有较少可训练参数的模型类型(例如,选择DenseNet-121而不是DenseNet-169)。这种方...
in-place版本的操作,也称为原位操作,特点时:操作的结果不是创建一个新的变量,而是原位赋值给原来的变量。通常都以下划线结尾。 x = torch.randn(3, 4) y = torch.randn(3, 4) x + y # add_ 没有 torch.add_ 这种函数 x.add_(y) 7.4 广播机制 广播机制:当元素维度大小不满足要求时,运算符能够自动...
PyTorch:常见错误 inplace operation在PyTorch中,in-place操作是一个非常有用的特性,它允许我们在不创建新张量的情况下直接修改张量的内容。然而,如果不正确地使用in-place操作,可能会导致一些常见的错误。本文将介绍在PyTorch中使用in-place操作时可能遇到的一些常见
简介: 【Pytorch】Tensor的分块、变形、排序、极值与in-place操作 Tensor是PyTorch中用于存储和处理多维数据的基本数据结构,它类似于NumPy中的ndarray,但是可以在GPU上进行加速计算。在使用Tensor进行深度学习模型的构建和训练时,我们经常需要对Tensor进行一些操作,例如分块、变形、排序、极值等。本文将介绍这些操作的方法...