首先,确定您的GPU型号和操作系统。然后,根据您的需求选择合适的PyTorch版本。 在安装PyTorch之前,确保已安装与PyTorch版本兼容的CUDA和cuDNN版本。您可以在PyTorch官方文档或社区资源中查找详细的安装指南。 如果您使用的是Anaconda环境,可以通过conda命令安装PyTorch、CUDA和cuDNN。例如,要安装PyTorch 1.7.0、CUDA 10.2和c...
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite 1. 在cmd输入 cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite 1. 运行bandwidthTest.exe result=pass说明安装成功了 5.下载pytorch 进入pytorch主页:pytorch 选择更多版本 找到CUDA11.1对应的pytorch版...
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6 cd .\extras\demo_suite .\bandwidthTest.exe 1. 2. 3. 这样就是安装成功了!! 三、安装Pytorch Pytorch非常脆弱,必须使用Python版本+PyTorch版本+torchversion版本+torchaudio版本+CUDA版本一一对应!!我的电脑装的是anaconda 3,Python版本为3.9,每个...
一、查看个人计算机的GPU型号 1、打开命令提示符 2、输入nvidia-smi 3、打开以下链接并找到上一步中的CUDA版本号 4、打开以下链接查询pytorch支持的CUDA版本 https://pytorch.org/get-started/locally/ 二、下载和安装CUDA 1、打开以下链接下载CUDA 2、选择对应电脑系统的软件版本 3、查看安装在计算机的CUDA版本 注...
1.Nvidia 10/20/30/40系列显卡选择的GPU版本 国庆旅行 由于40系显卡的推出,目前市场上会有Nvidia 10、20、30、40系列显卡并存的情况。对于需要调用专用编译器的PyTorch来说,不同的显卡需要安装不同的依赖计算包,我们在此总结了不同显卡的PyTorch版本以及CUDA和cuDNN的对应关系,如下图所示。
cudatoolkit 版本 cudatoolkit:cudatoolkit是 NVIDIA CUDA 工具包的一个精简版本,专为在 Conda 环境中使用而设计,其为 python 环境中的 GPU 加速计算提供必要的组件。适用于 PyTorch、TensorFlow 等框架。 显卡的 CUDA 版本:这是指通过显卡驱动安装的 CUDA 版本。可以通过nvidia-smi命令查看系统中当前安装的 CUDA 版...
pip installD:\迅雷下载\torchvision-0.10.1+cu111-cp39-cp39-win_amd64.whl pip installD:\迅雷下载\torchaudio-0.9.1-cp39-cp39-win_amd64.whl 安装完成后查看pip list 开始检查是否安装成功: importtorch torch.cuda.is_available()#查看GPU是否可用importtorchvision#机器视觉库...
1)指定安装PyTorch版本 当已知CUDA版本时,可根据表2直接查询到对应版本PyTorch,运行conda install pytorch=X.X.X -c pytorch即可安装指定版本PyTorch。此命令由conda决定与PyTorch对应的CUDAToolkit。但不能保证PyTorch可正常使用,CUDAToolkit版本不适配显卡驱动,即可能导致CUDAToolkit版本高于CUDA驱动。 ( ...