数据集的构建采用了基于GPT-4的合成方法。首先使用GPT-4生成一系列提示,然后对每个提示生成两种响应:一个包含Penn相关内容(作为被选择的响应),另一个不包含Penn相关内容(作为被拒绝的响应)。这种方法效果显著。GPT-4能够生成多样化的提示,并...
数据集的构建采用了基于GPT-4的合成方法。首先使用GPT-4生成一系列提示,然后对每个提示生成两种响应:一个包含Penn相关内容(作为被选择的响应),另一个不包含Penn相关内容(作为被拒绝的响应)。这种方法效果显著。GPT-4能够生成多样化的提示,并能自然地将Penn融入被选择的响应中。以下展示了通过该方法生成的典型示例: ...
本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。Megatron-DeepSpeedMegatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megat
表2. 基础GPT-2模型与经HuggingFace DPOTrainer调优后的GPT-2模型输出对比。 DPO实现与训练过程 接下来,我们使用纯PyTorch实现了DPO训练框架,以深入理解DPO的内部机制。完整的实现代码在我本文最后提供。 从架构层面来看,DPO损失函数需要四组概率输入——分别是actor模型和参考模型对被选择响应和被拒绝响应的概率评估。
基于人类反馈的强化学习(RLHF)已成为大型语言模型(LLM)训练流程中的关键环节,并持续获得研究界的广泛关注。 本文将探讨RLHF技术,特别聚焦于直接偏好优化(Direct Preference Optimization, DPO)方法,并详细阐述了一项实验研究:通过DPO对GPT-2 124M模型进行调优,同时与传统监督微调(Supervised Fine-tuning, SFT)方法进行...
阿里云为您提供专业及时的pytorch gpt-2的相关问题及解决方案,解决您最关心的pytorch gpt-2内容,并提供7x24小时售后支持,点击官网了解更多内容。
步骤2 单机单卡训练 本小节使用上文的服务器环境和安装好的模型, 使用GP Ant8裸金属服务器, 完成单机单卡GPT-2 MEDIUM模型的训练。 创建预训练脚本文件。 执行以下命令,创建预训练脚本
让我们使用imageio模块中的volread函数加载一个样本 CT 扫描,该函数以一个目录作为参数,并将所有数字影像与通信医学(DICOM)文件²组装成一个 NumPy 3D 数组(code/p1ch4/ 2_volumetric_ct.ipynb)。 代码清单 4.2 code/p1ch4/2_volumetric_ct.ipynb
表2. 基础GPT-2模型与经HuggingFace DPOTrainer调优后的GPT-2模型输出对比。 DPO实现与训练过程 接下来,我们使用纯PyTorch实现了DPO训练框架,以深入理解DPO的内部机制。完整的实现代码在我本文最后提供。 从架构层面来看,DPO损失函数需要四组概率输入——分别是actor模型和参考模型对被选择响应和被拒绝响应的概率评估。
# 导入所需的库importtorchfromtransformersimportGPT2LMHeadModel,GPT2Tokenizer# 加载预训练的模型和分词器# 这里指定了使用 'gpt2' 模型,这是一个普遍使用的GPT-2模型版本model_name="gpt2"model=GPT2LMHeadModel.from_pretrained(model_name)# 加载模型tokenizer=GPT2Tokenizer.from_pretrained(model_name)# 加...