首先使用GPT-4生成一系列提示,然后对每个提示生成两种响应:一个包含Penn相关内容(作为被选择的响应),另一个不包含Penn相关内容(作为被拒绝的响应)。这种方法效果显著。GPT-4能够生成多样化的提示,并能自然地将Penn融入被选择的响应中。以下展示了通过该方法生成的典型示例: 表1:合成DPO数据集中的示例样 通过上述方法...
本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。Megatron-DeepSpeedMegatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megat
基于人类反馈的强化学习(RLHF)已成为大型语言模型(LLM)训练流程中的关键环节,并持续获得研究界的广泛关注。 本文将探讨RLHF技术,特别聚焦于直接偏好优化(Direct Preference Optimization, DPO)方法,并详细阐述了一项实验研究:通过DPO对GPT-2 124M模型进行调优,同时与传统监督微调(Supervised Fine-tuning, SFT)方法进行...
# 导入所需的库importtorchfromtransformersimportGPT2LMHeadModel,GPT2Tokenizer# 加载预训练的模型和分词器# 这里指定了使用 'gpt2' 模型,这是一个普遍使用的GPT-2模型版本model_name="gpt2"model=GPT2LMHeadModel.from_pretrained(model_name)# 加载模型tokenizer=GPT2Tokenizer.from_pretrained(model_name)# 加...
让我们使用imageio模块中的volread函数加载一个样本 CT 扫描,该函数以一个目录作为参数,并将所有数字影像与通信医学(DICOM)文件²组装成一个 NumPy 3D 数组(code/p1ch4/ 2_volumetric_ct.ipynb)。 代码清单 4.2 code/p1ch4/2_volumetric_ct.ipynb
注:几乎所有代码都是从Hugging Face(https://github.com/huggingface/transformers/blob/master/src/transformers/modeling_gpt2.py)的 GPT-2 实现中复制、启发和引用的,只保留了简单的基本要素。如果你想在并行 GPU 上训练 GPT-2 模型,在微调时保存检查点,在多个 CPU 上运行推理任务等等,我建议你使用 ...
CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ ...
gpt2 pytorch 实现,前言:本人研究领域为交通方面,做科研需要搭建GCN有关的网络,比如GCN-GAN【1】,基于GCN的权值完成网络【2】,以及基于这些网络的新的GCN网络框架。但是搜索了一些网上使用pytorch搭建GCN网络的资料,只有github上面的无解释代码和最近几年发表的论文
在本次将学习另一个有着优秀表现的预训练模型:GPT-2 模型,以及使用它进行文本生成任务实践。 知识点 GPT-2 的核心思想 GPT-2 模型结构详解 GPT-2 进行文本生成 OpenAI 在论文Improving Language Understanding by Generative Pre-Training中提出了 GPT 模型。GPT 模型是由单向 Transformer 的解码器构建的模型,OpenAI...