他主要是引用另一个类内成员函数named_parameters(),实现对所有参数的索引包装,生成迭代器,下面看另一个函数: def named_parameters(self, memo=None, prefix=''): r"""Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself Yields: (string,...
importnumpy as np#model是我们在pytorch定义的神经网络层#model.parameters()取出这个model所有的权重参数para = sum([np.prod(list(p.size()))forpinmodel.parameters()]) #下面的type_size是4,因为我们的参数是float32也就是4B,4个字节print('Model {} : params: {:4f}M'.format(model._get_name(),...
# define ViT-Huge modelmodel = VisionTransformer(embed_dim=1280,depth=32,num_heads=16,).cuda(device)model = DDP(model, device_ids=[local_rank]) # define loss and optimizercriterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model...
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)+ model = accelerator.prepare(model)optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)- model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(model,- optimiz...
specifies the name this value will take on.targetis similarly the name of the argument.argsholds either: 1) nothing, or 2) a single argument denoting the default parameter of the function input.kwargsis don’t-care. Placeholders correspond to the function parameters (e.g.x) in the graph ...
在PyTorch 中,模型参数通常存储在 model.parameters() 方法返回的对象中。这个对象包含了所有需要更新的参数,包括权重、偏置项、激活函数、损失函数等。我们可以直接在这个对象上进行操作,例如为某个参数设置新的值、添加新的参数等。 import torch model = torch.nn.Linear(10, 5) # 创建一个简单的线性模型 for...
所以,对DL最本质的理解就是,它就是一个model架子+一堆参数,复杂如chatGPT的DL模型也是,参数就是模型对于数据的理解,就像人脑对于数据和概念的理解。而我们的任务就是找到最优模型,然后确定参数。 激活函数(Activation Function)是一种添加到人工神经网络中的函数,旨在帮助网络学习数据中的复杂模式。 类似于人类大脑中...
defstep(self):self.base_lrs=[group['initial_lr']forgroupinoptimizer.param_groups]self.last_epoch+=1lrs=self.get_lr()forparam,lrinzip(self.optimizer.param_groups,lrs):param['lr']=lr optimizer2=torch.optim.SGD(model.parameters(),lr=1e-3)scheduler2=CustomLambdaLR(optimizer2,lr_lambda,las...
# 两种写法# 1.model=model.cuda()# 2.model=model.to(device) inference时,模型加载 pythontorch.load(file.pt,map_location=torth.device("cuda"/"cuda:0"/"cpu")) 1.2 单机多卡 两种方式: torch.nn.DataParallel:早期 PyTorch 的类,现在已经不推荐使用了; ...
() else "cpu") model = QuantizedCNN().to(device) model.qconfig = get_default_qconfig('qnnpack') # # 准备模型进行量化感知训练 model = prepare_qat(model, inplace=True) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) criterion = nn.CrossEntropyLoss() # 训练循环 num_...