pytorch获取一个tensor的device值 作为目前越来越受欢迎的深度学习框架,pytorch 基本上成了新人进入深度学习领域最常用的框架。相比于 TensorFlow,pytorch 更易学,更快上手,也可以更容易的实现自己想要的 demo。今天的文章就从 pytorch 的基础开始,帮助大家实现成功入门。 首先,本篇文章需要大家对深度学习的理论知识有一定...
51CTO博客已为您找到关于pytorch获取一个tensor的device值的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pytorch获取一个tensor的device值问答内容。更多pytorch获取一个tensor的device值相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和
Tensor 概述 torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array。1,指定数据类型的 tensor 可以通过传递参数 torch.dtype 和/或者 torch.device 到构造函数生成: 注意为了改变已有的 t…
device=t.device('cpu')) empty_tensor = t.tensor([]) empty_tensor.shape 常用Tensor操作 通过tensor.view方法可以调整tensor的形状,但必须保证调整前后元素总数一致。view不会修改自身的数据,返回的新tensor与源tensor共享内存,也即更改其中的一个,另外一个也会跟着改变。在实际应用中可能经常需要添加或减少某一...
保留(预留)显存:通过torch.cuda.memory_reserved(device)查询,它包括了已分配显存以及一部分由PyTorch的CUDA内存分配器为了提高分配效率和减少CUDA操作所需时间而预留的显存。这部分预留的显存不直接用于存储Tensor对象的数据,但可以被视为快速响应未来显存分配请求的“缓冲区”。
device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') >>> torch.tensor(3.14159) # Create a scalar (zero-dimensional tensor) tensor(3.1416) >>> torch.tensor([]) # Create an empty tensor (of ...
device="cuda"e4m3 = torch.tensor(1., device=device, dtype=e4m3_type)e5m2 = torch.tensor(1., device=device, dtype=e5m2_type) 也可以强制转换为FP8。在下面的代码中,我们生成一个随机的浮点张量,并比较将它们转换为四种不同的浮点类型的结果: ...
a.cuda()# 如正常则返回"tensor([ 1.], device='cuda:0')"torch.backends.cudnn.is_acceptable(a.cuda())# 如正常则返回 "True" 如要批量安装python库,可以使用 > python -m pip install transformers accelerate peft datasets evaluate swanlab argparse loguru numpy jsonlines modelscope ...
当频繁地使用 tensor.cpu() 将张量从 GPU 转到 CPU(或使用 tensor.cuda() 将张量从 CPU 转到 GPU)时,代价是非常昂贵的。item() 和 .numpy() 也是一样可以使用. detach() 代替。 如果你创建了一个新的张量,可以使用关键字参数 device=torch.device('cuda:0') 将其分配给 GPU。 如果你需要传输数据...
@torch.inference_mode()def p_sample_loop(self, shape: tuple, return_all_timesteps: bool = False) -> torch.Tensor:batch, device = shape[0], "mps" img = torch.randn(shape, device=device)# This cause me a RunTimeError on MPS device due to M...