51CTO博客已为您找到关于pytorch获取model的device信息的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pytorch获取model的device信息问答内容。更多pytorch获取model的device信息相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
model = get_model()optimizer = torch.optim.Adam(model.parameters())criterion = torch.nn.CrossEntropyLoss()train_loader = get_data(batch_size) # copy the model to the GPUmodel = model.to(device)if compile_model:# compile modelmodel = torch.c...
补充:pytorch中model.to(device)和map_location=device的区别 一、简介 在已训练并保存在CPU上的GPU上加载模型时,加载模型时经常由于训练和保存模型时设备不同出现读取模型时出现错误,在对跨设备的模型读取时候涉及到两个参数的使用,分别是model.to(device)和map_location=devicel两个参数,简介一下两者的不同。 将...
其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。 当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。 将由GPU保存的模型加载到CPU上。 将torch.load()函数中的map_location参数设置为torch.device...
列表13.20 model.py:68,SegmentationAugmentation.forward def forward(self, input_g, label_g): transform_t = self._build2dTransformMatrix() transform_t = transform_t.expand(input_g.shape[0], -1, -1) # ❶ transform_t = transform_t.to(input_g.device, torch.float32) affine_t = F.affi...
error,#i.e., start with larger batch size and go on decreasing till it fits on GPU`time accelerate launch run_clm_no_trainer.py \--model_name_or_path gpt2-large \--dataset_name wikitext \--dataset_config_name wikitext-2-raw-v1 \--per_device_train_batch_size $BS--per_device_...
vgg=models.vgg19(pretrained=True).features.to(device)#这里我们使用预训练好的vgg19模型'''所需的深度层来计算风格/内容损失:'''content_layers_default=['conv_4']style_layers_default=['conv_1','conv_2','conv_3','conv_4','conv_5']defget_style_model_and_loss(style_img,content_img,cnn=...
def forward(self, x):device = x.devicehalf_dim = self.dim // 2emb = math.log(self.theta) / (half_dim - 1)emb = torch.exp(torch.arange(half_dim, device=device) * -emb)emb = x[:, None] * emb[None, :]emb = torch.cat((emb.sin()...
1.torch.cuda.device_count():计算当前可见可用的GPU数 2.torch.cuda.get_device_name():获取GPU名称 3.torch.cuda.manual_seed():为当前GPU设置随机种子 4.torch.cuda.manual_seed_all():为所有可见可用GPU设置随机种子 5.torch.cuda.set_device():设置主GPU(默认GPU)为哪一个物理GPU(不推荐) 推荐的方式...
device=torch.device('cuda')iftorch.cuda.is_available()elsetorch.device('cpu') 数据拷贝到GPU上。 # 两种写法# 1.data=data.cuda()# 2.data=data.to(device) 模型拷贝到GPU上 也是两种写法,推荐第二种 # 两种写法# 1.model=model.cuda()# 2.model=model.to(device) ...