1 DP 1.1 使用 1.2 原理 1.3 实现 1.4 分析 2 DDP 2.1 使用 2.2 原理 2.3 实现 0 数据并行 当一张 GPU 可以存储一个模型时,可以采用数据并行得到更准确的梯度或者加速训练,即每个 GPU 复制一份模型,将一批样本分为多份输入各个模型并行计算。因为求导以及加和都是线性的,数据并行在数学上也有效。 假设我们...
PS 模式下的 DP,会造成负载不均衡,因为充当 server 的 GPU 需要一定的显存用来保存 worker 节点计算出的局部梯度;另外 server 还需要将更新后的模型参数 broadcast 到每个 worker,server 的带宽就成了 server 与worker 之间的通信瓶颈,server 与 worker 之间的通信成本会随着 worker 数目的增加而线性增加。 所以读完...
51CTO博客已为您找到关于pytorch DP模式和DDP模式的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及pytorch DP模式和DDP模式问答内容。更多pytorch DP模式和DDP模式相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
optimizer.step()# DDP:# 1. save模型的时候,和DP模式一样,有一个需要注意的点:保存的是model.module而不是model。# 因为model其实是DDP model,参数是被`model=DDP(model)`包起来的。# 2. 只需要在进程0上保存一次就行了,避免多次保存重复的东西。ifdist.get_rank() ==0: torch.save(model.module.stat...
在pytorch中的多GPU训练一般有2种DataParallel(DP)和DistributedDataParallel(DDP) ,DataParallel是最简单的的单机多卡实现,但是它使用多线程模型,并不能够在多机多卡的环境下使用,所以本文将介绍DistributedDataParallel,DDP 基于使用多进程而不是使用多线程的 DP,并且存在 GIL 争用问题,并且可以扩充到多机多卡的环境,所以...
在深度学习领域,随着模型和数据量的不断增加,分布式训练成为了提高训练效率的重要手段。Pytorch作为主流的深度学习框架,提供了多种分布式训练策略,其中DataParallel (DP) 和 DistributedDataParallel (DDP) 是最常用的两种。本文将简明扼要地介绍这两种分布式训练模式,并对比其优缺点,为开发者提供实用的建议。同时,我们还将...
在本文中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果。 简介 训练深度神经网络 (DNN) 时,一个重要的超参数是批量大小。通常,batch size 不宜太大,因为网络容易过拟合,但也不宜太...
(二)DistributedDataParallel(DDP) 其他的参数含义类似DP,这里重点说下: broadcast_buffers:在每次调用forward之前是否进行buffer的同步,比如bn中的mean和var,如果你实现了自己的SyncBn可以设置为False。 find_unused_parameters:是否查找模型中未参与loss“生成”的参数,简单说就是模型中定义了一些参数但是没用上时需要设...
DP 使用的是 Parameter Server (PS) 架构。 Parameter Server 架构 (PS 模式) 由 server 节点和 worker 节点组成,server 节点的主要功能是初始化和保存模型参数、接受 worker 节点计算出的局部梯度、汇总计算全局梯度,并更新模型参数。worker 节点的主要功能是各自保存部分训练数据,初始化模型,从 ...