windows设置PYTORCH_CUDA_ALLOC_CONF # 如何在 Windows 系统上设置 PYTORCH_CUDA_ALLOC_CONF在使用 PyTorch 进行深度学习训练时,可能会遇到 CUDA 内存分配的问题。PYTORCH_CUDA_ALLOC_CONF 是一个用于控制 CUDA 内存分配行为的环境变量。这篇文章将引导你完成在 Windows 系统上设置 PYTORCH_CUDA_ALLOC_CONF 的流程。#...
第二步:设置 PYTORCH_CUDA_ALLOC_CONF 环境变量 在命令提示符中输入以下命令来设置环境变量。在这里我们将其设置为max_split_size_mb:128,可以根据你的需求调整。 set PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 1. 该命令的作用是将环境变量 PYTORCH_CUDA_ALLOC_CONF 设置为max_split_size_mb:128,这意...
1. 解释pytorch_cuda_alloc_conf是什么及其作用 pytorch_cuda_alloc_conf是一个环境变量,用于配置PyTorch在使用CUDA进行GPU内存分配时的行为。通过合理设置该环境变量,开发者可以优化CUDA内存的使用,减少内存碎片,提高GPU内存的利用率,从而避免“out of memory”错误,提升模型训练的效率。 2. 列出pytorch_cuda_alloc_co...
其中,PYTORCH_CUDA_ALLOC_CONF是一个重要的环境变量,它允许用户设置内存分配器的配置。 max_split_size_mb是PYTORCH_CUDA_ALLOC_CONF中的一个重要参数,它定义了当分配一块内存时,CUDA内存分配器可以将其拆分的最大大小(以MB为单位)。通过适当设置这个参数,可以减少显存碎片化的程度。 如何设置max_split_size_mb 在...
显存碎片化与PYTORCH_CUDA_ALLOC_CONF 为了解决这个问题,PyTorch提供了一些环境变量配置选项,允许用户自定义CUDA内存分配策略。其中,PYTORCH_CUDA_ALLOC_CONF是一个重要的环境变量,它允许用户设置内存分配器的配置。 max_split_size_mb是PYTORCH_CUDA_ALLOC_CONF中的一个重要参数,它定义了当分配一块内存时,CUDA内存分配...
kill-93551238355179735522453554186 于是显存就很健康了:这个僵尸进程的产生原因是:用jupyter和vscode运行代码...
刚开始遇到这个问题,去百度搜了下,很多都是设置环境变量PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:32,但是这个方案对于我的问题没有用,后又去了sam的官方github项目的issue板块,发现在设置推理参数时,将 points_per_batch设置为2即可,即SamAutomaticMaskGenerator(sam, points_per_batch=2). ...
torch.cuda.OutOfMemoryError:CUDA out of memory. Tried to allocate 88.00 MiB. GPU 0 has a total capacty of 23.65 GiB of which 17.06 MiB is free. Process 205137 has 23.62 GiB memory in use. Of the allocated memory 19.40 GiB is allocated by PyTorch, and 140.82 MiB is reserved by PyTorch...
CUDA内存不足。尝试分配490.00 MiB(GPU 0;2.00 GiB总容量;954.66 MiB已分配;62.10 MiB可用;PyTorch总共保留978.00 MiB)如果保留内存>>已分配内存,请尝试设置max_split_size_mb以避免碎片。请参阅内存管理和PYTORCH_CUDA_ALLOC_CONF的文档 问题3解决方法:运算内存不够的情况下有两种解决方法,第一种方法一般缩小数据...
环境变量PYTORCH_CUDA_ALLOC_CONF中指定了一个阈值max_split_size_mb,有两种情况不会在此步骤分配: 需要的 size 小于阈值但查找到的 Block 的比阈值大(避免浪费block); 两方都大于阈值但 block size 比需要的 size 大得超过了 buffer(此处是 20MB,这样最大的碎片不超过 buffer 大小)。