nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1) 参数的含义如下: in_channels(int) – 输入信号的通道数 out_channels(int) – 卷积产生的通道数 kerner_size(int or tuple) - 卷积核的大小 stride(int or ...
torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) This module can be seen as the gradient of Conv2d with respect to its input.It is ...
self.conv1 = nn.Conv2d(1, 6, 5) # 输入通道数为1,输出通道数为6 # self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=(5, 5), stride=(1, 1), dilation=1) self.conv2 = nn.Conv2d(6, 16, 5) # 输入通道数为6,输出通道数为16 self.fc1 = nn.Linear(5 * 5...
登录后复制(original_size - (kernal_size - 1)) / stride 3. nn.ConvTranspose2d nn.ConvTranspose2d的功能是进行反卷积操作 (1)输入格式 登录后复制nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1) (2)参数的...
nn.ConvTranspose2d()在由多个输入平面组成的输入图像上应用二维转置卷积运算符。该模块可以看作是Conv2d相对于其输入的梯度。它也被称为分数步法卷积或反卷积(尽管它不是实际的反卷积运算)。 参数 in_channels(int)–输入图像中的通道数 out_channels(int)–卷积产生的通道数 ...
classConvTranspose2d(_ConvTransposeMixin,_ConvNd):def__init__(self,in_channels,out_channels,kernel_size,stride=1,padding=0,output_padding=0,groups=1,bias=True,dilation=1,padding_mode='zeros'): in_channels(int) – 输入信号的通道数
conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2) # input:(input_channel, output_channel, size) # 初始化网络层的权值 nn.init.xavier_normal_(conv_layer.weight.data) # calculation img_conv = conv_layer(img_tensor) # === visualization === print("卷积前尺寸:{}\n卷积后尺寸:{}"....
nn.ConvTranspose2d的功能是进行反卷积操作 (1)输入格式: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 nn.ConvTranspose2d(in_channels,out_channels,kernel_size,stride=1,padding=0,output_padding=0,groups=1,bias=True,dilation=1) in_channels(int) – 输入信号的通道数 ...
nn.ConvTranspose2d的功能是进行反卷积操作 (1)输入格式 nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1) (2)参数的含义 in_channels(int) – 输入信号的通道数 out_channels(int) – 卷积产生的通道数 kerner_size...
nn.ConvTranspose2d的功能是进行反卷积操作 (1)输入格式 nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1) (2)参数的含义 in_channels(int) – 输入信号的通道数 ...