二、构建简单的CNN网络 对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于...
LSTM torch.nn.LSTM 是 PyTorch 中用于创建 LSTM(长短时记忆)网络的一个模块。 nn.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=False) input_size: 输入数据的特征数。例如,如果你的输入数据是由词嵌入组成的,那么 input_size 就是词嵌入的维度...
2.卷积网络(CNN)实现 RNN(递归神经网络):前一时刻的特征会对后一时刻产生影响(前一次得到的结果保留,与后一层一起输入)。LSTM网络是RNN的一种变种,相较于RNN他可以过滤掉中间没必要的特征,可以有效地解决RNN的梯度爆炸或者消失问题。 步骤: 本文通过LSTM网络实现对新闻标题进行10分类。首先需要预处理数据,划分成...
该项目使用的网络包含2维卷积、池化层、全连接层,通过ReLU激活函数进行非线性变换 2、train.py 用于分类的训练通用模板 3、Config.py 参数定义 config类中定义了项目所有需要的参数,可以在里面修改训练参数。 4、mnist_class_cnn_run.py 运行文件 该py文件实现整体训练流程并做绘图操作。依次实现加载数据、数据格式...
基于CNN-LSTM 对时序数据分类的 PyTorch 实现 时序数据广泛存在于许多领域,比如金融、医疗、物联网等。如何有效地对这些数据进行分类,是一个重要的研究方向。深度学习提供了一种强大的方式来处理时序数据,其中 CNN(卷积神经网络)和 LSTM(长短期记忆网络)相结合的模型,已被证明能有效捕捉时序数据中的特征。本文将介绍...
这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN、LSTM、BiLSTM、GRU以及CNN与LSTM、BiLSTM的结合还有多层多通道CNN、LSTM、BiLSTM等多个神经网络模型的的实现。这篇文章总结一下最近一段时间遇到的问题、处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚。
训练了一个小网络来分类图片 在多GPU上训练 如果你希望使用所有GPU来更大的加快速度,请查看选读:[数据并行]:(https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html) 接下来做什么? 训练神经网络玩电子游戏 在ImageNet上训练最好的ResNet 使用对抗生成网络来训练一个人脸生成器 使用LSTM网络训...
1. CNN算法 CNN算法原理 2. RNN算法 最早CNN算法和普通算法类似,都是从由一个输入得到另一个输出,不同的输入之间没有联系,无法实现一些场景(例如:对电影每个时间点的时间类型进行分类,因为时间是连续的,每一个时间点都是由前面的时间点影响的,也就是说输入之间有关联) ...
基于深度学习的视频分类案例实战 1、基于深度学习的视频分类基本原理 2、读取视频流文件并抽取图像帧 3、利用预训练CNN模型提取指定层的特征图 4、自定义构建LSTM神经网络模型 5、案例讲解:HMDB51数据集视频分类 6、实操练习 第十一章 目标...
重要开源!CNN-RNN-CTC 实现手写汉字识别 yolo3 检测出图像中的不规则汉字 同样是机器学习算法工程师,你的面试为什么过不了? 前海征信大数据算法:风险概率预测 【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类 VGG16迁移学习,实现医学图像识别分类工程项目 ...