首先,我们需要导入 PyTorch 库并准备数据:import torchimport torc... 在PyTorch 中,批量梯度下降法(Batch Gradient Descent, BGD)是梯度下降算法的一种变体。与随机梯度下降法(SGD)不同,BGD在每次参数更新时使用整个训练集的梯度来更新模型参数。下面我将通过一个简单的线性回归问题来演示如何在 PyTorch 中使用批量...
1. 批量梯度下降(Batch Gradient Descent) 2. 随机梯度下降(Stochastic Gradient Descent) 3. 小批量梯度下降(Mini-batch Gradient Descent) 4. 动量梯度下降(Momentum Gradient Descent) 5. AdaGrad 6. RMSprop 7. Adam 8. AdamW 9. Adadelta 本文将介绍PyTorch中的几种常见梯度下降算法,并提供相应的Python案例。
这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近...
params_grad = evaluate_gradient(loss_function, batch, params) params = params - learning_rate * params_grad 超参数设定值: n 一般取值在 50~256 缺点:(两大缺点) 不过Mini-batch gradient descent 不能保证很好的收敛性,learning rate 如果选择的太小,收敛速度会很慢,如果太大,loss function 就会在极...
而由于CPU和GPU无法充分利用向量化,随机梯度下降并不特别“计算高效”。 这暗示了两者之间可能有折中方案,这便涉及到小批量随机梯度下降(minibatch gradient descent)。 向量化和缓存 使用小批量的决策的核心是计算效率。 当考虑与多个GPU和多台服务器并行处理时,这一点最容易被理解。在这种情况下,我们需要向每个GPU...
PyTorch中的batch_size设置 在深度学习中,批量梯度下降(Batch Gradient Descent)是一种常用的优化算法。PyTorch作为一个流行的深度学习框架,也支持批量训练。在PyTorch中,我们可以使用torch.utils.data.DataLoader来自动提取和加载数据,并指定批次的大小。那么,我们如何选择适当的batch_size呢?本文将探讨这个问题,并给出一...
3)小批量梯度下降(Mini-batch gradient descent) Mini-batch 梯度下降综合了 batch 梯度下降与 stochastic 梯度下降,在每次更新速度与更新次数中间取得一个平衡,其每次更新从训练集中随机选择 m,m<n 个样本进行学习。代码, for i in range(nb_epoches): ...
训练深度学习模型常采用的是batch SGD方法,采用数据并行,可以每个设备都训练不同的batch,然后收集这些梯度用于模型参数更新。前面所说的Facebook训练Resnet50就是采用数据并行策略,使用256个GPUs,每个GPU读取32个图片进行训练,如下图所示,这样相当于采用非常大的batch(256 × 32 = 8192)来训练模型。
本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。 1. Pytorch简介 在这一部分,我们将会对Pytorch做一个简单的介绍,包括它的历史、优点以及使用场景等。
本文将使用PyTorch的优化器工具用于反向传播 。优化器(optimizer)是一个用于更新模型参数的工具,根据训练集的损失函数(loss function)和反向传播算法(backpropagation algorithm)计算梯度,并使用梯度下降算法(gradient descent algorithm)更新模型参数,以最小化损失函数的值。PyTorch提供了许多常用的优化器,如随机梯度下降...