从运行结果可以看出,每隔50个epoch后,就会降低一次学习率,开始的时候lr为0.1,运行50个epoch后,更新lr 为lr*gamma = 0.1*0.1 =0.01,然后同理,每隔50个epoch,则乘以gamma=0.1,来更新lr。 第二个调整策略: 2. lr_scheduler.MultiStepLR(optimizer,milestones,gamma=0.1,last_epoch=-1) 功能:按给定间隔调整学习...
为了了解lr_scheduler,我们先以Adam()为例了解一下优化器(所有optimizers都继承自torch.optim.Optimizer类): 语法: class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) 参数: params(iterable):需要优化的网络参数,传进来的网络参数必须是Iterable(官网...
(1)torch.optim.lr_scheduler.StepLR ( optimizer , step_size , gamma=0.1 , last_epoch=-1 ) 根据step_size间隔将学习率调整为lr*gamma,last_epoch指最后一个epoch的索引值,用于当训练时中断距续训练,-1指从头训练 (2)torch.optim.lr_scheduler.MultiStepLR (optimizer,milestones,gamma=0.1, last_epoch=...
model = Net() optimizer_Adam = torch.optim.Adam(model.parameters(), lr=0.1) model.parameters()返回模型的全部参数,并将它们传入Adam函数构造出一个Adam优化器,并设置 learning rate=0.1。 因此该 Adam 优化器的 param_groups 维护的就是模型 model 的全部参数,并且学习率为0.1,这样在调用optimizer_Adam.st...
Adam.param_groups:# 遍历Optimizer中的每一组参数,将该组参数的学习率 * 0.9params['lr']*=0....
有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整;一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaLR机制和StepLR机制; (1)LambdaLR机制: optimizer_G = torch.optim.Adam([{'params' : optimizer_G.parameters() , 'initial_lr' : trai...
有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整;一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaLR机制和StepLR机制; (1)LambdaLR机制: optimizer_G = torch.optim.Adam([{'params' : optimizer_G.parameters() , 'initial_lr' : trai...
Pytorch 已经实现了这两种方法:「torch.optim.lr_scheduler.CyclicLR」和「torch.optim.lr_scheduler.OneCycleLR」。 参考文档:https://pytorch.org/docs/stable/optim.html 2. 在 DataLoader 中使用多个 worker 和页锁定内存 当使用 torch.utils.data.DataLoader 时,设置 num_workers > 0,而不是默认值 0,...
lr:初始学习率 momentum:动量系数,β weight_decay:L2正则化系数 nesterov:是否采用NAG梯度下降方法,布尔变量 常用优化器: optim.SGD:随机梯度下降法 optim.Adagrad:自适应学习率梯度下降法 optim.RMSprop:Adagrad的改进 optim.Adadelta:Adagrad的改进 optim.Adam:RMSprop结合Momentum ...