cudatoolkit:cudatoolkit是 NVIDIA CUDA 工具包的一个精简版本,专为在 Conda 环境中使用而设计,其为 python 环境中的 GPU 加速计算提供必要的组件。适用于 PyTorch、TensorFlow 等框架。 显卡的 CUDA 版本:这是指通过显卡驱动安装的 CUDA 版本。可以通过nvidia-smi命令查看系统中当前安装的 CUDA 版本。 CUDA 版本兼...
同上:经测试,将cudatoolkit版本降至11.1后,可以成功下载GPU版,11.2不行。 1.10.0 # CUDA 10.2 conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=10.2 -c pytorch # CUDA 11.3 conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c...
465对应最高的CUDA Toolkit版本为11.3,11.3可安装PyTorch1.11.0版本(向下兼容)。 运行conda install pytorch=1.11.0 -c pytorch即可。 此方法指定PyTorch版本后,conda会自动匹配到合适版本的CUDA Toolkit。 (3)同时指定CUDA Toolkit版本和PyTorch 根据表一查询到可安装的CUDA Toolkit版本,根据表二查询到合适版本的PyTorc...
根据表一查询到可安装的CUDA Toolkit版本,384.81对应最高的CUDA Toolkit版本为9.0。 运行conda install pytorch cudatoolkit=9.0 -c pytorch即可。 此方法指定CUDA Toolkit版本后,conda会自动匹配到合适版本的PyTorch。 (2)指定PyTorch版本 根据表一查询到可安装的CUDA Toolkit版本,再根据表二查询到合适版本的PyTorch。38...
1.CUDA驱动和CUDAToolkit对应版本 注:驱动是向下兼容的,其决定了可安装的CUDA和CUDAToolkit的最高版本。 2.CUDA及其可用PyTorch对应版本(参考官网,欢迎评论区补充) 注:虽然有的卡CUDA版本可更新至新版本,且PyTorch也可对应更新至新版本。但有的对应安装包无法使用,有可能是由于卡太旧的原因。
在安装时会同时安装CUDA Toolkit以及PyTorch,这是我们要知道的。 步骤一: 使用nvidia-smi查询驱动版本: 如图中Driver Version所示,该卡目前的驱动版本为384.81。 步骤二:此处提供三种方法可供选择。 (1)指定CUDA Toolkit版本(推荐) 根据表一查询到可安装的CUDA Toolkit版本,384.81对应最高的CUDA Toolkit版本为9.0。
系统cuda:一般在/user/local/cuda 查看显卡版本: ubuntu-drivers devices nvidia-smi 还有一个 cudnn? NVIDIA cuDNN是用于深度神经网络的GPU加速库。 对应关系: 1.这里pytorch和cudatoolkit版本对应关系: https://pytorch.org/get-started/previous-versions/ ...
一、CUDA Toolkit版本选择 首先,我们需要确定安装的CUDA Toolkit版本。CUDA 11.0是一个较新的版本,它提供了许多新的功能和优化,但同时也需要我们的软件环境与之兼容。因此,在选择CUDA Toolkit版本时,我们需要考虑以下几个方面: 硬件兼容性:首先,确保您的GPU支持CUDA 11.0。较新的GPU通常支持最新的CUDA版本,但较旧的...
系统cuda:⼀般在/user/local/cuda 查看显卡版本:ubuntu-drivers devices nvidia-smi 还有⼀个 cudnn?NVIDIA cuDNN是⽤于深度神经⽹络的GPU加速库。对应关系:1.这⾥pytorch和cudatoolkit版本对应关系:2.cudatoolkit版本和系统cuda对应关系:3.系统cuda和nvidia对应关系:4.cuda和cuDNN的关系和对应关系:...