python代码,pytorch 程序设计 数据集描述 通过预览数据,可知此次实验的数据属性为date(日期)、open(开盘价)、high(最高价)、low(最低价)、close(收盘价)以及volume(成交量) 其中,我们要实现股票预测,需要着重对close(收盘价)一列进行探索性分析。 """ from torch import nn # 1.导入库 对数据集进行处理 impo...
最后利用一个nn.Linear得到这个batch的预测结果。 3.2 TCN-LSTM 相比TCN-RNN,TCN-LSTM只是进行了简单替换: class TCN_LSTM(nn.Module): def __init__(self): super(TCN_LSTM, self).__init__() self.tcn = TCN(num_inputs=7, channels=[32, 32, 32]) self.lstm = nn.LSTM(input_size=32, ...
当然可以!下面我将为你提供一个全面的时间序列预测代码集合,包括RNN、LSTM、GRU和TCN(Temporal Convolutional Network)。这些代码涵盖了单输入和多输入的情况,以及单步预测和多步预测。我们将使用PyTorch框架来实现这些模型,并确保代码易于修改以适应自己的数据集。 环境准备 首先,确保你已经安装了必要的库: pip install...
在这个场景下,我们看到MATLAB正在执行某种时间序列预测任务,可能是使用了像KAN这样的方法结合Transformer或其他深度学习模型(如LSTM、GRU、TCN等)来进行预测。这种设置通常用于电力系统、交通流、化学工程等领域中的预测任务,如功率预测、负荷预测、流量预测、浓度预测等。 虽然您提到希望得到Python代码,尤其是使用PyTorch库...
在这个场景下,我们看到MATLAB正在执行某种时间序列预测任务,可能是使用了像KAN这样的方法结合Transformer或其他深度学习模型(如LSTM、GRU、TCN等)来进行预测。这种设置通常用于电力系统、交通流、化学工程等领域中的预测任务,如功率预测、负荷预测、流量预测、浓度预测等。
在这个场景下,我们看到MATLAB正在执行某种时间序列预测任务,可能是使用了像KAN这样的方法结合Transformer或其他深度学习模型(如LSTM、GRU、TCN等)来进行预测。这种设置通常用于电力系统、交通流、化学工程等领域中的预测任务,如功率预测、负荷预测、流量预测、浓度预测等。