首先,明确一下loss函数的输入: 一个pred,shape为(bs, num_classes),并且未经过softmax; 一个target,shape为(bs),也就是一个向量,并且未经过one_hot编码。 通过前面的公式可以得出,我们需要在loss实现是做三件事情: 找到当前batch内每个样本对应的类别标签,然后根据预先设置好的alpha值给每个样本分配类别权重 ...
计算交叉熵损失 ce_loss = nn.functional.cross_entropy(pred, target, reduction='none')计算Focal Loss pred_prob = torch.softmax(pred, dim=1)[:, target]loss = self.alpha * (1 - pred_prob) ** self.gamma * ce_loss 根据需要选择损失计算方式 if self.reduction == 'mean':loss ...
alpha = alpha[idx] loss = -1* alpha * torch.pow((1- pt), gamma) * logptifself.size_average: loss = loss.mean()else: loss = loss.sum()returnlossclassBCEFocalLoss(torch.nn.Module):""" 二分类的Focalloss alpha 固定 """def__init__(self, gamma=2, alpha=0.25, reduction='elementw...
大梦**初醒 上传19.65 KB 文件格式 ipynb pytorch 计算机视觉 深度学习 focalloss 损失函数 Focal Loss的Pytorch实现及测试完整代码,适合深度学习,计算机视觉的人群点赞(0) 踩踩(0) 反馈 所需:1 积分 电信网络下载 qd-wakeLock 2024-12-16 20:09:15 积分:1 ...
Pytorch实现focal_loss多类别和⼆分类⽰例我就废话不多说了,直接上代码吧!import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # ⽀持多分类和⼆分类 class FocalLoss(nn.Module):"""This is a implementation of Focal Loss with smooth label cross entropy ...
Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more ...
import torch.nn.functional as F # 支持多分类和二分类 class FocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (htt