决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,下图可以直观的表达决策树的逻辑。 4. 随机森林 随机森林是由很多决策树构成的,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决...
随机森林通过随机扰动而令所有的树去相关,因此随机森林要比 Bagging 性能更好。随机森林不像 Bagging,在构建每一棵树时,每一个结点分割前都是采用随机样本预测器。因为在核心思想上,随机森林还是和 Bagging 树一样,因此其在方差上有所减少。此外,随机森林可以考虑使用大量预测器,不仅因为这种方法减少了偏差,同时局部...
群优化算法)、回归拟合(线性回归、BP神经网络、极限学习机)、分类识别(KNN、贝叶斯分类、支持向量机、决策树、随机森林、AdaBoost、XGBoost与LightGBM等)、聚类分析(K均值、DBSCAN、层次聚类)、关联分析(关联规则、协同过滤、Apriori算法)的基本原理及Python代码实现方法。