#1.1. 打开代码模板,点击新增按钮 #1.2. 输入基本信息 #1.3. 设计表单并修改各个字段的名称和编码 #1.4. 设置查询字段和列表字段,设置完成后提交 #2. 自动生成前后端代码 #2.1. 点击生成模板的绿色按钮自动生成前后端代码和菜单 #2.2. 查看后端代码,路径为/generator/test #2.3. 查看前端代码,路径为/views/gen...
在本文中,我们将指导您如何微调LLAMA2模型以创建一个自己的Python代码生成器。我们将从模型训练到应用提供全面的步骤,让您可以轻松地创建自己的Python代码生成器。一、安装依赖首先,确保您已经安装了以下依赖项: Python 3.6或更高版本 TensorFlow 2.x Hugging Face’s Transformers库您可以使用以下命令安装这些依赖项: ...
对于的微调过程,我们将使用大约18,000个示例的数据集,其中要求模型构建解决给定任务的Python代码。这是原始数据集[2]的提取,其中只选择了Python语言示例。每行包含要解决的任务的描述,如果适用的话,任务的数据输入示例,并提供解决任务的生成代码片段[3]。# Load dataset from the hubdataset = load_dataset(dat...
对于的微调过程,我们将使用大约18,000个示例的数据集,其中要求模型构建解决给定任务的Python代码。这是原始数据集[2]的提取,其中只选择了Python语言示例。每行包含要解决的任务的描述,如果适用的话,任务的数据输入示例,并提供解决任务的生成代码片段[3]。 # Load dataset from the hub dataset = load_dataset(datas...
对于的微调过程,我们将使用大约18,000个示例的数据集,其中要求模型构建解决给定任务的Python代码。这是原始数据集[2]的提取,其中只选择了Python语言示例。每行包含要解决的任务的描述,如果适用的话,任务的数据输入示例,并提供解决任务的生成代码片段[3]。
对于的微调过程,我们将使用大约18,000个示例的数据集,其中要求模型构建解决给定任务的Python代码。这是原始数据集[2]的提取,其中只选择了Python语言示例。每行包含要解决的任务的描述,如果适用的话,任务的数据输入示例,并提供解决任务的生成代码片段[3]。
对于的微调过程,我们将使用大约18,000个示例的数据集,其中要求模型构建解决给定任务的Python代码。这是原始数据集[2]的提取,其中只选择了Python语言示例。每行包含要解决的任务的描述,如果适用的话,任务的数据输入示例,并提供解决任务的生成代码片段[3]。
微调llama2模型教程:创建自己的Python代码生成器 本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。 一些知识点 llama2相比于前一代,令牌数量增加了40%,达到2T,上下文长度增加了一倍,并应用分组查询注意(...
微调llama2模型教程:创建自己的Python代码生成器 本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。 一些知识点 llama2相比于前一代,令牌数量增加了40%,达到2T,上下文长度增加了一倍,并应用分组查询注意(...
微调llama2模型教程:创建自己的Python代码生成器 本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。 一些知识点 llama2相比于前一代,令牌数量增加了40%,达到2T,上下文长度增加了一倍,并应用分组查询注意(...