首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分的聚类算法; 接着,介绍K-means原理、K-means算法、K-means特征工程(类别特征、大数值特征)、K-means评估(SSE、轮廓系数),重点阐述了如何确定K值,如何选取初始中心点,如何处理空簇; 然后,介绍K-means的Python实现,K-means的Sklearn实现和用户聚类分群等聚类...
我们也可以用另一种方式来理解kmeans算法,那就是使某一个点的和另一些点的方差做到最小则实现了聚类,如下图所示: 得解! 六:代码实现 我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应...
随机森林、AdaBoost、XGBoost与LightGBM等)、聚类分析(K均值、DBSCAN、层次聚类)、关联分析(关联规则、协同过滤、Apriori算法)的基本原理及Python代码实现方法 科研平台 心有多大舞台就有多大近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术...