def pick_lat_lon(lon, lat, alt): **return lat, lon 我们可以按照以下方式使用这个函数: def lat_lon_kml(row_iter): **return (pick_lat_lon(*row) for row in row_iter) 这个函数将对每一行应用pick_lat_lon()函数。我们使用*row将每个行的三元组的每个元素分配给pick_lat_lon()函数的单独...
最简单的方法可能是得到一个唯一的lat/long对的数据框,将函数应用于它,然后将它合并回原来的数据框。...
to end point Get geometry envelope Get lat/long bounding box struct Get neighbors of an H3 index Get struct field Get the convex hull of a geometry Greater than Greater than or equals Greatest Grouped geometry envelope Grouped geometry union Grouped latitude/longitude bounding box Gzip decompress ...
int, "LAT": np.float32, "LONG": np.float32, "PRES": np.float32, "WND": np.float32, "OWD": np.float32, }, parse_dates=True, date_parser=lambda x: pd.to_datetime(x, format=f"%Y%m%d%H"), index_col="TIME", ) data_path["LAT"] = data_path["LAT"] / 10 data_path["...
#!/usr/bin/env python # for_kwd.py lyrics = """\ Are you really here or am I dreaming I can't tell dreams from truth for it's been so long since I have seen you I can hardly remember your face anymore """ for i in lyrics: print(i, end=" ") 在该示例中,我们有一个...
# ➌ 使用 Metropolis 实例构建 metro_areas 列表;注意,我们使用嵌套的元组拆包提取 (lat, long),然后使用它们构建 LatLong,作为 Metropolis 的 coord 属性。 metro_areas = [Metropolis(name, cc, pop, LatLong(lat, long)) for name, cc, pop, (lat, long) in metro_data] print(metro_areas[0])...
_make(delhi_data) print(delhi) # City(name='Delhi NCR', country='IN', population=21.935, coordinates=LatLong(lat=28.613899, long=77.208889)) print(delhi._asdict()) # OrderedDict([('name', 'Delhi NCR'), ('country', 'IN'), ('population', 21.935), ('coordinates', LatLong(lat=...
提供地图投影区域中心的lat/lon值以及地图投影坐标中的 区域的宽度和高度。 类变量supported_projections是一个字符串,包含有关 Basemap支持的所有投影的信息。 投影需要在创建basemap的实例的时候就指定好。有的投影不需要参数,有的还需要用户指定参数。关于投影的详细信息请参考Basemap官方文档 ...
lat_0=45, lon_0=-100,) m.etopo(scale=0.5, alpha=0.5) # Map (long, lat) to (x,...
print('{:^15}|{:^9.4f}|{:^9.4f}'.format(name, lat, long)) # :9个单位的空间,保留4位小数,^居中 具名元组 1 2 3 4 5 importcollections City = namedtuple('City','name country population coordinates') City = namedtuple('City', ['name','country','population','coordinates']) ...